Dispersion analysis of non-homogeneous transversely isotropic electro-magneto-elastic plate of polygonal cross-section

P. Ponnusamy and A. Amuthalakshmi
Department of Mathematics, Government Arts College, Coimbatore – 641 018, Tamil nadu, India.

ABSTRACT
In this article, wave propagation in non-homogenous transversely isotropic electro-magneto-elastic plate of polygonal cross-section is studied using the Fourier expansion collocation method. The frequency equations are obtained from the polygonal cross-sectional boundary conditions, since the boundary is irregular in shape; it is difficult to satisfy the boundary along the surface of the plate directly. Hence, the Fourier expansion collocation method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method applicable for complex roots. The computed non-dimensional frequencies are plotted in the form of dispersion curves and their characteristics are discussed. This problem may be extended to any kinds of cross-sections using the proper geometrical relations.

Introduction
The wave propagation in non-homogeneous transversely isotropic electro-magneto-elastic plate has gained considerable importance since last decade. The electro-magneto-elastic materials exhibit a desirable coupling effect between electric and magnetic fields, which are useful in smart structure applications. These materials have the capacity to convert one form of energy namely, magnetic, electric and mechanical energy to another form of energy. The composite consisting of piezoelectric and piezomagnetic components have found increasing application in engineering structures, particularly in smart/intelligent structure system. The electro-magneto-elastic materials are used as magnetic field probes, electric packing, acoustic, hydrophones, medical, ultrasonic, image processing, sensor and actuators with the responsibility of electro-magnetic-mechanical energy conversion.

Wave propagation in arbitrary cross-sectional plates and cylinders were analyzed and to find out the phase velocities in different modes of vibration namely longitudinal, torsional and flexural by constructing frequency equation was derived by Nagaya [1-3]. He formulated the Fourier expansion collocation method for this purpose and the same method is used in this problem. Pan [4] derived an exact three-dimensional solution for a simply supported multilayered orthotropic magneto-electro-elastic plate. Pan and Heyliger [5] investigated the free vibration of piezoelectric – magnetostrictive plate. Chen et al. [6] showed theoretically that there actually exists a class of vibration of which the frequencies depend on the elastic property only. Chen et al. [7] derived the general solution for transversely isotropic magneto-electro-elastic-thermo-elasticity. Hou and Leung [8] obtained the analytical solution for the axisymmetric plane strain magneto-electro-elastic dynamics of hollow cylinder for axisymmetric flexural wave in piezoelectric – piezomagnetic cylinders. Later Hou et al. [9] discussed the transient response of non-homogenous plane strain problem. Wei and Su [10] studied the wave propagation and energy transportation along cylindrical piezoelectric piezomagnetic material. Chen and Chen [11] investigated the Love wave behavior in magneto-electro-elastic multilayered structures by the propagation matrix method. Using the propagator matrix and state-over approaches, an analytical treatment is presented for the propagation of harmonic waves in magneto-electro-elastic multilayered plates by Chen et al. [12]. Abd-Alla and Mahmoud [13, 14] investigated magneto-thermo elastic problems in rotating non-homogeneous orthotropic hollow cylindrical under the hyperbolic heat conduction model and the effect of the rotation on propagation of thermoelastic waves in non-homogeneous infinite cylinder of isotropic material. Chen et al. [15, 16] studied the free vibration and general solution of non-homogeneous transversely isotropic magneto-electro-elastic hollow cylinder.

This paper analyzes the vibration of transversely isotropic non-homogenous electro-magneto-elastic plate of polygonal cross-section using the theory of elasticity. For polygonal cross-sections the boundary is irregular, therefore Fourier collocation technique is applied to obtain the frequency equations. The secant method is applied to determine the complex roots of frequency equation. The non-dimensional frequencies are computed and the numerical values are plotted in the form of dispersion curves.

Formulation of the Problem

We consider a transversely isotropic non-homogeneous electro-magneto-elastic plate of polygonal cross-sections. The system displacements and stresses are defined by the polar coordinates \(r \) and \(\theta \) in a polygonal point inside the plate and denote the displacements \(u_r \) in the direction of \(r \) and \(u_\theta \) in the tangential direction \(\theta \). The in-plane vibration and displacement of polygonal cross-sectional plate is obtained by assuming that there is no vibration and displacements along the \(z \)−axis in the cylindrical coordinate system \((r, \theta, z) \). The two-dimensional stress equations of motion, electric and magnetic conduction equation in the absence of body forces are

\[
\begin{align*}
\frac{1}{r} \frac{\partial}{\partial r} \left(r \sigma_{rr} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r \sigma_{r\theta} \right) + \frac{1}{r} \left(\sigma_{rr} - \sigma_{\theta\theta} \right) &= \frac{\partial^2 u_r}{\partial t^2}, \\
\frac{1}{r} \frac{\partial}{\partial r} \left(r \sigma_{r\theta} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r \sigma_{\theta\theta} \right) + 2 \frac{\sigma_{r\theta}}{r} &= \frac{\partial^2 u_\theta}{\partial t^2}
\end{align*}
\]

(1)

The electric conduction equation is

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r D_r \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r D_\theta \right) = 0,
\]

(2)

The magnetic conduction equation is

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r B_r \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r B_\theta \right) = 0,
\]

(3)

Where,

\[
\begin{align*}
\sigma_{rr} &= c_{11} e_{rr} + c_{12} e_{\theta \theta}, \\
\sigma_{\theta \theta} &= c_{12} e_{rr} + c_{11} e_{\theta \theta}, \\
\sigma_{r\theta} &= 2c_{66} e_{r\theta}, \\
D_r &= \epsilon_{11} E_r + m_{11} H_r, \\
D_\theta &= \epsilon_{11} E_\theta + m_{11} H_\theta, \\
B_r &= m_{11} E_r + \mu_{11} H_r, \\
B_\theta &= m_{11} E_\theta + \mu_{11} H_\theta,
\end{align*}
\]

(4)

Where \(\sigma_{rr}, \sigma_{\theta \theta}, \sigma_{r\theta} \) are the stress components, \(c_{11}, c_{12}, c_{66} \) are elastic constants, \(\epsilon_{11} \) is the dielectric constants, \(\mu_{11} \) is the magnetic permeability coefficients, \(m_{11} \) is the electro-magneto material coefficients, \(\rho \) is the mass density of the material, \(D_r, D_\theta \) are the electric displacements, \(B_r, B_\theta \) are the magnetic displacement components.
The strain e_r, e_θ related to the displacements corresponding to the polar coordinates (r, θ) are given by

$$e_r = \frac{\partial u_r}{\partial r}, \quad e_\theta = \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r}, \quad e_{r\theta} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_r}{\partial r} - \frac{u_\theta}{r} \right),$$

(7)

Where u_r, u_θ are the mechanical displacements along the radial, circumferential directions respectively.

The electric field vector $E_i, (i = r, \theta)$ is related to the electric potential E as

$$E_r = -\frac{\partial E}{\partial r}, \quad E_\theta = -\frac{1}{r} \frac{\partial E}{\partial \theta}.$$

(8)

Similarly, the magnetic field vector $H_i, (i = r, \theta)$ is related to the magnetic potential H as

$$H_r = -\frac{\partial H}{\partial r}, \quad H_\theta = -\frac{1}{r} \frac{\partial H}{\partial \theta}.$$

(9)

Substituting Eqs. (7) – (9) to the Eqs. (1) – (6), we obtain

$$\begin{align*}
\sigma_{rr} &= c_{11} \frac{\partial u_r}{\partial r} + c_{12} \left(\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} \right), \\
\sigma_{r\theta} &= c_{12} \frac{\partial u_r}{\partial r} + c_{11} \left(\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} \right), \\
\sigma_{\theta\theta} &= c_{66} \left(\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_r}{\partial r} - \frac{u_\theta}{r} \right),
\end{align*}$$

(10)

and

$$\begin{align*}
D_r &= -\varepsilon_{11} \frac{\partial E}{\partial r} - m_{11} \frac{\partial H}{\partial r}, \\
D_\theta &= -\varepsilon_{11} \frac{\partial E}{r \partial \theta} - \frac{m_{11}}{r} \frac{\partial H}{\partial \theta}, \\
B_r &= -m_{11} \frac{\partial E}{r \partial \theta} - \mu_{11} \frac{\partial H}{\partial \theta}, \\
B_\theta &= -m_{11} \frac{\partial E}{r \partial \theta} - \frac{\mu_{11}}{r} \frac{\partial H}{\partial \theta}.
\end{align*}$$

(11)

The elastic constants c_{11}, c_{12}, c_{66}, magnetic permeability coefficient μ_{11}, dielectric constants ε_{11}, electromagnetic material coefficients m_{11}, density ρ are expressed as functions of the radial coordinates are

$$c_{11} = (L + V) r^{2m}, \quad c_{12} = L r^{2m}, \quad c_{66} = \frac{V r^{2m}}{2}, \quad \mu_{11} = V' r^{2m}, \quad m_{11} = m_1' r^{2m}, \quad \varepsilon_{11} = \varepsilon_1' r^{2m}, \quad \rho = \rho_0 r^{2m},$$

(12)

Where L, V, V' and ρ_0 are constants, m is the rational number, substituting Eq. (12) in Eqs. (10) – (11), we obtain the stress-displacement equation for non-homogeneous materials

$$\begin{align*}
\sigma_{rr} &= r^{2m} \left[(L + V) \frac{\partial u_r}{\partial r} + L \left(\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} \right) \right], \\
\sigma_{r\theta} &= r^{2m} \left[L \frac{\partial u_r}{\partial r} + (L + V) \left(\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} \right) \right], \\
\sigma_{\theta\theta} &= \frac{V}{2} r^{2m} \left(\frac{\partial u_\theta}{\partial r} - \frac{u_\theta}{r} + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \right).
\end{align*}$$

(13)

and
$$D_r = r^{3n} \left(-\frac{\partial E}{\partial r} - m_{n_{I}} \frac{\partial H}{\partial r} \right),$$

$$D_\theta = r^{3n} \left(-\frac{\partial E}{r \partial \theta} - m_{n_{II}} \frac{\partial H}{r \partial \theta} \right),$$

$$B_r = r^{3n} \left(-m_{n_{I}} \frac{\partial E}{\partial r} - V \frac{\partial H}{\partial r} \right),$$

$$B_\theta = r^{3n} \left(-m_{n_{II}} \frac{\partial E}{r \partial \theta} \right).$$

Substituting Eqs. (13) – (14) into Eqs. (1) – (3), we obtain the set of displacement equations as follows

$$(L+V) \left(\frac{\partial^2 u_r}{\partial r^2} + \frac{1}{r} \frac{\partial u_r}{\partial r} - \frac{u_r}{r^2} \right) + \frac{V}{2r^2} \left(\frac{\partial^2 u_\theta}{\partial \theta^2} + \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} \right) = \rho \frac{\partial^2 u_r}{\partial t^2}$$

$$(L+V) \left(\frac{\partial^2 u_\theta}{\partial r^2} + \frac{1}{r} \frac{\partial u_\theta}{\partial r} - \frac{u_\theta}{r^2} \right) + \frac{V}{2r^2} \left(\frac{\partial^2 u_r}{\partial \theta^2} + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \right) = \rho \frac{\partial^2 u_\theta}{\partial t^2}$$

$$E_{n_{I}} \left(\frac{\partial^2 E}{\partial r^2} + \frac{1}{r} \frac{\partial E}{\partial r} + \frac{1}{r} \frac{\partial^2 E}{\partial \theta^2} \right) + m_{n_{I}} \left(\frac{\partial^2 H}{\partial r^2} + \frac{1}{r} \frac{\partial H}{\partial r} + \frac{1}{r} \frac{\partial^2 H}{\partial \theta^2} \right) + \frac{2m}{r} \left(\frac{\partial E}{\partial r} + m_{n_{I}} \frac{\partial H}{\partial r} \right) = 0,$$

$$m_{n_{II}} \left(\frac{\partial^2 E}{\partial r^2} + \frac{1}{r} \frac{\partial E}{\partial r} + \frac{1}{r} \frac{\partial^2 E}{\partial \theta^2} \right) + V \left(\frac{\partial^2 H}{\partial r^2} + \frac{1}{r} \frac{\partial H}{\partial r} + \frac{1}{r} \frac{\partial^2 H}{\partial \theta^2} \right) + \frac{2m}{r} \left(m_{n_{II}} \frac{\partial E}{\partial r} + V \frac{\partial H}{\partial r} \right) = 0.$$

The Eq. (15) is a coupled partial differential equation of two displacements, the electric potentials and magnetic potential components.

Solutions of the Problem

To uncouple Eq. (15), we seek the solutions in the following form

$$u_r (r, \theta, t) = \sum_{n=0}^{\infty} E_n \left(r^{n+1} \psi_{n, \theta} - \phi_{n, \phi} + r^{n+1} \overline{\psi}_{n, \theta} - \overline{\phi}_{n, \phi} \right)$$

$$u_\theta (r, \theta, t) = \sum_{n=0}^{\infty} E_n \left(r^{n+1} \phi_{n, \phi} - \psi_{n, \theta} + r^{n+1} \overline{\phi}_{n, \phi} - \overline{\psi}_{n, \theta} \right)$$

$$E (r, \theta, t) = \sum_{n=0}^{\infty} E_n \left(E_n + E_n \right)$$

$$H (r, \theta, t) = \sum_{n=0}^{\infty} E_n \left(H_n + H_n \right)$$

Where $E_n = 1/2$ for $n = 0$, $E_n = 1$ for $n \geq 1$, $\phi_{n, \phi} (r, \theta)$, $\psi_{n, \theta} (r, \theta)$, $E_n (r, \theta)$, $H_n (r, \theta)$ are the displacement potentials for the symmetric mode and $\overline{\phi}_{n, \phi} (r, \theta)$, $\overline{\psi}_{n, \theta} (r, \theta)$, $\overline{E}_n (r, \theta)$ and $\overline{H}_n (r, \theta)$ are the displacement potentials for the antisymmetric modes of vibrations.

Substituting Eq. (16) in Eq. (15), we get

$$(L+V) \nabla^2 \phi_r + 2m \left(\frac{L+V}{r} \frac{\partial \phi_r}{\partial r} - \frac{L}{r^2} \phi_r \right) - \rho \frac{\partial^2 \phi_r}{\partial t^2} = 0.$$
\[\varepsilon_{11} \nabla^2 E_n + m_{11} \nabla^2 H_n + \frac{2m}{r} \left(\varepsilon_{11} \frac{\partial E_n}{\partial r} + m_{11} \frac{\partial H_n}{\partial r} \right) = 0, \]
(17b)

\[m_{11} \nabla^2 E_n + V \nabla^2 H_n + \frac{2m}{r} \left(m_{11} \frac{\partial E_n}{\partial r} + V \frac{\partial H_n}{\partial r} \right) = 0, \]
(17c)

and

\[\frac{V}{2} \nabla^2 \psi_n + \nu \left(\frac{1}{r} \frac{\partial \psi_n}{\partial r} - \frac{\psi_n}{r} \right) = 0, \]
(18)

Where

\[\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}. \]

We consider the free vibration of non-homogeneous transversely isotropic plate, so we assume the solutions as follows

\[\phi_n (r, \theta, t) = r^{-m} \phi_n (r) \cos n \theta e^{i\omega t}, \]

\[E_n (r, \theta, t) = r^{-m} E_n (r) \cos n \theta e^{i\omega t}, \]

\[H_n (r, \theta, t) = r^{-m} H_n (r) \cos n \theta e^{i\omega t}, \]
(19)

and

\[\psi_n (r, \theta, t) = r^{-2m} \psi_n (r) \cos n \theta e^{i\omega t}. \]
(20)

Substituting Eqs. (19)-(20) in the Eqs.(17) and (18), we obtain

\[\phi_n'' (r) + \frac{1}{r} \phi_n' (r) + \left(\frac{\rho \omega^2 a^2}{(L+V)} - \frac{1}{r^2} \left(\frac{m^2 + n^2}{(L+V)} + 2mL \right) \right) \phi_n (r) = 0, \]

\[\phi_n'' (r) + \frac{1}{r} \phi_n' (r) + \left(\alpha^2 r^2 - \beta^2 \right) \phi_n (r) = 0, \]
(21)

Where

\[\alpha^2 = \frac{\rho \omega^2 a^2}{(L+V)}, \quad \beta^2 = \frac{\left(m^2 + n^2 \right) (L+V) + 2mL}{(L+V)}. \]

Eq. (21) is a Bessel equation of order \(\beta \), its solution is

\[\phi_n (r) = \left[A_n J_\beta (ar) + A_n' Y_\beta (ar) \right] \cos n \theta, \]
(22)

Where \(A_n \) and \(A_n' \) are the arbitrary constants, \(J_\beta (ar) \) and \(Y_\beta (ar) \) denote the Bessel functions of the first and second kind of order \(\beta \), respectively.

Substitute Eq. (20) into the Eq. (18), we get

\[\psi_n'' (r) + \frac{1}{r} \psi_n' (r) + \left(\frac{2 \rho \omega^2 a^2}{V} - \frac{1}{r} \left(4m^2 + 4m^n \right) \right) \psi_n (r) = 0, \]

\[\psi_n'' (r) + \frac{1}{r} \psi_n' (r) + \left(\delta^2 r^2 - \delta^2 \right) \psi_n = 0, \]
(23)

Eq. (23) is a Bessel equation of order \(\delta \), its solution is

\[\psi_n (r) = \left[A_n J_\delta (kr) + A_n' Y_\delta (kr) \right] \sin n \theta, \]
(24)

Where \(A_n \) and \(A_n' \) are arbitrary constants and \(J_\delta (kr) \) and \(Y_\delta (kr) \) denote the Bessel function of the first and second kind of order \(\delta \) respectively.

Substituting Eq. (19) into the Eqs. (17b) and (17c), we obtain
\[
\left(\varepsilon_{11} \frac{\partial^2 E_n}{\partial r^2} + \varepsilon_{11}' \frac{1}{r} \left(2m+1 \right) \frac{\partial E_n}{\partial r} + \varepsilon_{22}' \frac{1}{r} \frac{\partial^2 E_n}{\partial \theta^2} \right) + \left(m_{11} \frac{\partial^2 H_n}{\partial r^2} + m_{11}' \frac{1}{r} \left(2m+1 \right) \frac{\partial H_n}{\partial r} + m_{11}'' \frac{1}{r^2} \frac{\partial^2 H_n}{\partial \theta^2} \right) = 0, \\
(\text{i.e.}) \quad \varepsilon_{11} \left(E_n' (r) + \frac{1}{r} E_n'' (r) - \frac{P_n^2}{r^2} E_n (r) \right) + m_{11} \left(H_n' (r) + \frac{1}{r} H_n'' (r) - \frac{P_n^2}{r^2} H_n (r) \right) = 0,
\]
(25)

and
\[
\left(\text{i.e.} \right) \quad m_{11} \left(E_n' (r) + \frac{1}{r} E_n'' (r) - \frac{P_n^2}{r^2} E_n (r) \right) + V \left(H_n' (r) + \frac{1}{r} H_n'' (r) - \frac{P_n^2}{r^2} H_n (r) \right) = 0,
\]
(26)

Where \(p_n^2 = m_n^2 + n_n^2 \).

Solving Eqs. (25) and (26), we get
\[
E_n' (r) + \frac{1}{r} E_n'' (r) - \frac{P_n^2}{r^2} E_n (r) = 0,
\]
(27)
\[
H_n' (r) + \frac{1}{r} H_n'' (r) - \frac{P_n^2}{r^2} H_n (r) = 0,
\]
(28)

The general solutions to the Eqs. (27) and (28) are
\[
E_n (r, \theta, t) = \left(A_{3n} r^n + A_{4n}' r^{-n} \right) \cos n \theta e^{i \omega t}, \\
H_n (r, \theta, t) = \left(A_{5n} r^n + A_{6n}' r^{-n} \right) \cos n \theta e^{i \omega t},
\]
(29)

Where \(A_{3n}, A_{4n}', A_{5n}, A_{6n}' \) are the arbitrary constants.

The general solutions to the solid plate of polygonal cross-sections are considered as
\[
\phi_n (r, \theta, t) = A_{7n} r^n \cos n \theta, \\
E_n (r, \theta, t) = A_{8n} r^n \cos n \theta, \\
H_n (r, \theta, t) = A_{9n} r^n \cos n \theta, \\
\psi_n (r, \theta, t) = A_{10n} r^n \sin n \theta,
\]
(30a)

Boundary conditions and frequency equations

In this problem, the free vibration of non-homogeneous transversely isotropic electro-magneto-elastic plate of polygonal cross-section is considered. Since the boundary is irregular in shape, it is difficult to satisfy the boundary conditions along the surface of the plate directly. Hence, the Fourier expansion collocation method is applied to satisfy the boundary conditions. For the plate, the normal stress \(\sigma_{rr} \) and shearing stresses \(\sigma_{\theta r} \), the electric field \(E_x \) and the magnetic field \(B_x \) is equal to zero for the stress free boundary. Thus, the following types of boundary conditions are assumed for the plate of polygonal cross-section is
\[
\left. \left(\sigma_{rr} \right) \right| = \left(\sigma_{\theta r} \right) = \left. \left(D_x \right) \right| = \left. \left(B_x \right) \right| = 0,
\]
(31)

Where \(\left(\right) \) is the value at the boundary \(\Gamma \) as shown in Fig 1. Since the vibration displacements are expressed in terms of the coordinates \(r \) and \(\theta \), it is convenient to treat the boundary conditions when the derivatives in the equations of the stresses are transformed in terms of the coordinates \(r \) and \(\theta \) instead of the coordinates \(x \) and \(y \).
The relations between the displacements for the i-th segment of straight line boundaries are

$$u_x = u_x \cos(\theta - \gamma_i) - u_y \sin(\theta - \gamma_i),$$
$$u_y = u_x \cos(\theta - \gamma_i) + u_y \sin(\theta - \gamma_i).$$

(32)

Since the angle γ_i between the reference axis and normal of the i-th boundary has a constant value in a segment Γ_i, we obtain

$$\frac{\partial r}{\partial x_i} = \cos(\theta - \gamma_i), \quad \frac{\partial \theta}{\partial x_i} = \frac{1}{r} \sin(\theta - \gamma_i)$$

$$\frac{\partial r}{\partial y_i} = \sin(\theta - \gamma_i), \quad \frac{\partial \theta}{\partial y_i} = \frac{1}{r} \cos(\theta - \gamma_i).$$

(33)

Using the Eqs. (32) and (33), the normal and shearing stresses are transformed as

$$\sigma_{xx} = \left(c_{11} \cos^2(\theta - \gamma_i) + c_{12} \sin^2(\theta - \gamma_i) \right) \frac{\partial u_x}{\partial r} + \frac{1}{r} \left(c_{11} \sin^2(\theta - \gamma_i) + c_{12} \cos^2(\theta - \gamma_i) \right) \left(u_x + \frac{\partial u_x}{\partial \theta} \right) +$$

$$c_{11} \left(\frac{u_x}{r} - \frac{1}{r} \frac{\partial u_x}{\partial \theta} - \frac{\partial u_y}{\partial r} \right) \sin 2(\theta - \gamma_i) = 0,$$

$$\sigma_{yy} = c_{11} \left(\frac{\partial u_y}{\partial r} \right) + \frac{1}{r} \left(\frac{\partial u_y}{\partial \theta} \right) \sin 2(\theta - \gamma_i) + \left(\frac{1}{r} \frac{\partial u_y}{\partial \theta} + \frac{\partial u_x}{\partial r} - \frac{u_y}{r} \right) \cos 2(\theta - \gamma_i) = 0,$$

$$D_x = -c_{11} \frac{\partial E_x}{\partial r} - m_{11} \frac{\partial H}{\partial r} = 0,$$

$$B_y = -m_{11} \frac{\partial E_x}{\partial r} - \mu_{11} \frac{\partial H}{\partial r} = 0.$$

(34)

Applying non-homogeneity to the Eq. (34), we get

$$\sigma_{xx} = \left((L + V) \cos^2(\theta - \gamma_i) + L \sin^2(\theta - \gamma_i) \right) \frac{\partial u_x}{\partial r} + \frac{1}{r} \left((L + V) \sin^2(\theta - \gamma_i) + L \cos^2(\theta - \gamma_i) \right) \left(u_x + \frac{\partial u_x}{\partial \theta} \right)$$

$$+ \frac{u_x}{2} \left(\frac{u_x}{r} - \frac{1}{r} \frac{\partial u_x}{\partial \theta} - \frac{\partial u_y}{\partial r} \right) \sin 2(\theta - \gamma_i) = 0.$$
\[
\sigma_{\theta} = \frac{V}{2} \left(\frac{\partial u_r}{\partial r} - \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} - \frac{u_r}{r} \right) \sin 2(\theta - \gamma_r) + \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_\theta}{\partial r} - \frac{u_\theta}{r} \right) \cos 2(\theta - \gamma_r) = 0,
\]
\[
D_x = -\varepsilon_{11} \frac{\partial E}{\partial r} - m_{11} \frac{\partial H}{\partial r} = 0,
\]
\[
B_x = -m_{11} \frac{\partial E}{\partial r} - \mu_{11} \frac{\partial H}{\partial r} = 0.
\]

Substituting Eqs. (30a) and (30d) in Eq. (31), the boundary conditions are transformed for stress free polygonal cross-sectional plate as follows:

\[
\left[(S_x)_i + (\bar{S}_x)_i \right] e^{\alpha x r} = 0,
\]
\[
\left[(S_y)_i + (\bar{S}_y)_i \right] e^{\alpha y r} = 0,
\]
\[
\left[(E_x)_i + (\bar{E}_x)_i \right] e^{\alpha x r} = 0,
\]
\[
\left[(H_x)_i + (\bar{H}_x)_i \right] e^{\alpha x r} = 0,
\]

Where

\[
S_{xx} = 0.5 \left(A_{10} e_{10}^1 + A_{20} e_{20}^1 + A_{30} e_{30}^1 \right) + \sum_{n=1}^{\infty} \left(A_{1n} e_{1n}^1 + A_{2n} e_{2n}^1 + A_{3n} e_{3n}^1 + A_{4n} e_{4n}^1 \right),
\]
\[
S_{yy} = 0.5 \left(A_{10} f_{10}^1 + A_{20} f_{20}^1 + A_{30} f_{30}^1 \right) + \sum_{n=1}^{\infty} \left(A_{1n} f_{1n}^1 + A_{2n} f_{2n}^1 + A_{3n} f_{3n}^1 + A_{4n} f_{4n}^1 \right),
\]
\[
E_x = 0.5 \left(A_{10} g_{10}^1 + A_{20} g_{20}^1 + A_{30} g_{30}^1 \right) + \sum_{n=1}^{\infty} \left(A_{1n} g_{1n}^1 + A_{2n} g_{2n}^1 + A_{3n} g_{3n}^1 + A_{4n} g_{4n}^1 \right),
\]
\[
H_x = 0.5 \left(A_{10} h_{10}^1 + A_{20} h_{20}^1 + A_{30} h_{30}^1 \right) + \sum_{n=1}^{\infty} \left(A_{1n} h_{1n}^1 + A_{2n} h_{2n}^1 + A_{3n} h_{3n}^1 + A_{4n} h_{4n}^1 \right),
\]

\[
\bar{S}_{xx} = 0.5 \varepsilon_{10} \bar{A}_{xx} + \sum_{n=1}^{\infty} \left(\bar{A}_{1n} \bar{e}_{1n}^1 + \bar{A}_{2n} \bar{e}_{2n}^1 + \bar{A}_{3n} \bar{e}_{3n}^1 + \bar{A}_{4n} \bar{e}_{4n}^1 \right),
\]
\[
\bar{S}_{yy} = 0.5 \bar{f}_{10} \bar{A}_{yy} + \sum_{n=1}^{\infty} \left(\bar{A}_{1n} \bar{f}_{1n}^1 + \bar{A}_{2n} \bar{f}_{2n}^1 + \bar{A}_{3n} \bar{f}_{3n}^1 + \bar{A}_{4n} \bar{f}_{4n}^1 \right),
\]
\[
\bar{E}_x = 0.5 \bar{g}_{10} \bar{A}_x + \sum_{n=1}^{\infty} \left(\bar{A}_{1n} \bar{g}_{1n}^1 + \bar{A}_{2n} \bar{g}_{2n}^1 + \bar{A}_{3n} \bar{g}_{3n}^1 + \bar{A}_{4n} \bar{g}_{4n}^1 \right),
\]
\[
\bar{H}_x = 0.5 \bar{h}_{10} \bar{A}_x + \sum_{n=1}^{\infty} \left(\bar{A}_{1n} \bar{h}_{1n}^1 + \bar{A}_{2n} \bar{h}_{2n}^1 + \bar{A}_{3n} \bar{h}_{3n}^1 + \bar{A}_{4n} \bar{h}_{4n}^1 \right).
\]

The coefficients \(e^i\) are given in the Appendix A.

Performing the Fourier series expansion to the Eq. (31) along the boundary, the boundary conditions along the boundary of the surface are expanded in the form of double Fourier series. When the plate is symmetric about more than one axis, the boundary conditions in the case of symmetric mode can be written in the form of a matrix as follows:
Similarly the matrix for the antisymmetric mode is obtained as

\[
\begin{bmatrix}
E_{00} & E_{01} & \cdots & E_{0N} & E_{10} & E_{11} & \cdots & E_{1N} & \cdots & E_{N0} & E_{N1} & \cdots & E_{NN}
\end{bmatrix}
\begin{bmatrix}
A_{00} \\
A_{01} \\
\vdots \\
A_{N0} \\
A_{N1}
\end{bmatrix}
= 0
\]

(38)

Where

\[
E_{mm} = \left(\frac{2e}{\pi}\right) \sum_{i=1}^{N} \sum_{\theta} c_i (R_i, \theta) \cos m\theta d\theta,
\]

\[
F_{mm} = \left(\frac{2e}{\pi}\right) \sum_{i=1}^{N} \sum_{\theta} f_i (R_i, \theta) \cos m\theta d\theta,
\]

\[
G_{mm} = \left(\frac{2e}{\pi}\right) \sum_{i=1}^{N} \sum_{\theta} g_i (R_i, \theta) \cos m\theta d\theta,
\]

\[
H_{mm} = \left(\frac{2e}{\pi}\right) \sum_{i=1}^{N} \sum_{\theta} h_i (R_i, \theta) \cos m\theta d\theta.
\]

(39)

Similarly the matrix for the antisymmetric mode is obtained as

\[
\begin{bmatrix}
\overline{E}_{00} & \overline{E}_{01} & \cdots & \overline{E}_{0N} & \overline{E}_{10} & \overline{E}_{11} & \cdots & \overline{E}_{1N} & \cdots & \overline{E}_{N0} & \overline{E}_{N1} & \cdots & \overline{E}_{NN}
\end{bmatrix}
\begin{bmatrix}
\overline{A}_{00} \\
\overline{A}_{01} \\
\vdots \\
\overline{A}_{N0} \\
\overline{A}_{N1}
\end{bmatrix}
= 0,
\]

(40)

Where

\[
\overline{E}_{mm} = \left(\frac{2e}{\pi}\right) \sum_{i=1}^{N} \sum_{\theta} \overline{e_i} (R_i, \theta) \sin m\theta d\theta,
\]

\[
\overline{F}_{mm} = \left(\frac{2e}{\pi}\right) \sum_{i=1}^{N} \sum_{\theta} \overline{f_i} (R_i, \theta) \sin m\theta d\theta,
\]

\[
\overline{G}_{mm} = \left(\frac{2e}{\pi}\right) \sum_{i=1}^{N} \sum_{\theta} \overline{g_i} (R_i, \theta) \sin m\theta d\theta,
\]

\[
\overline{H}_{mm} = \left(\frac{2e}{\pi}\right) \sum_{i=1}^{N} \sum_{\theta} \overline{h_i} (R_i, \theta) \sin m\theta d\theta.
\]

(41)
Numerical results and discussions

The numerical analysis of the frequency equation is carried out for non-homogeneous transversely isotropic electro-magneto-elastic plate of polygonal cross-section. The electro-magnetic material constants based on graphical result of Aboudi [24] used for numerical calculations. The material constants are

\[c_{11} = 218 \times 10^8 N/m^2, \quad c_{12} = 120 \times 10^8 N/m^2, \quad c_{66} = 49 \times 10^6 N/m^2, \]

\[\varepsilon_{11} = 0.4 \times 10^{-8} C/Vm, \quad \mu_{11} = -200 \times 10^{-6} Ns^2 / c^2 \]

and \(m_{11} = 0.0074 \times 10^{-9} Ns/VC \). Substituting \(R \) and the angle \(\gamma \) between the reference axis and the normal to the \(i \)-th boundary line, the integrations of the Fourier coefficients \(e', f', g', h', e', f', g', n', \) and \(\tilde{n} \) (and \(\tilde{n} \)) can be expressed in terms of the angle \(\theta \). Using the coefficients into Eqs. (39) and (41), the frequencies are obtained for non-homogeneous transversely isotropic electro-magneto-elastic plates of polygonal cross-sectional plate.

In the present problem, there are three kinds of basic independent modes of wave propagation have been considered namely longitudinal and two flexural (symmetric and antisymmetric) modes for geometries having more than one symmetry. For geometries having only one symmetry, two modes of wave propagation are studied since the two flexural (symmetric and antisymmetric) modes are coupled in this case.

Polygonal cross-sections

The geometry of the polygonal cross-sections used in the numerical calculations are shown in the Fig. 2, the geometric relations for the polygonal cross-sections given by Nagaya [25] as

\[R_i / b = \left[\cos(\theta - \gamma_i) \right]^{-1} \]

\[\theta_i = 0^\circ \quad \gamma_i = 0^\circ \]
\[\theta_i = 120^\circ \quad \gamma_i = 180^\circ \]
\[\theta_i = 180^\circ \quad \gamma_i = 120^\circ \]

\[\theta_i = 0^\circ \quad \gamma_i = 45^\circ \]
\[\theta_i = -90^\circ \quad \gamma_i = -135^\circ \]
\[\theta_i = 180^\circ \quad \gamma_i = 90^\circ \]

\[\theta_i = 0^\circ \quad \gamma_i = 0^\circ \]
\[\theta_i = 36^\circ \quad \gamma_i = 72^\circ \]
\[\theta_i = 108^\circ \quad \gamma_i = 144^\circ \]
\[\theta_i = 180^\circ \quad \gamma_i = 180^\circ \]

\[\theta_i = 0^\circ \quad \gamma_i = -30^\circ \]
\[\theta_i = -60^\circ \quad \gamma_i = -90^\circ \]
\[\theta_i = 120^\circ \quad \gamma_i = 150^\circ \]
\[\theta_i = 180^\circ \quad \gamma_i = 216^\circ \]

Fig. 2. Geometry of polygonal cross sections a) Triangle b) Square c) Pentagon and d) Hexagonal cross sections

where \(b \) is the apothem. The relation given in Eq. (42) is used directly for the numerical calculation. The dimensionless wave numbers, which are complex in nature, are computed by fixing \(\Omega \) for \(0 < \Omega \leq 1.0 \) using secant method. The basic independent modes
like longitudinal and flexural modes of vibration are analyzed and the corresponding non-dimensional wave numbers are computed. The polygonal cross-sectional bar in the range $\theta = 0$ and $\theta = \pi$ is divided into many segments for convergence of wave number in such a way that the distance between any two segments is negligible. The computation of Fourier coefficients given in Eq. (39) is carried out using the five point Gaussian quadrature. The results of longitudinal and flexural (symmetric and antisymmetric) modes are plotted in the form of dispersion curves.

Triangular and Pentagonal cross-sections

The triangular and pentagonal cross-sectional cylinders the vibration and displacements are symmetrical about the x axis for the longitudinal mode and antisymmetrical about the y axis for the flexural mode since the cross-section is symmetric about only one axis. Therefore n and m are chosen as 0, 1, 2, 3… in Eq. (38) for the longitudinal mode and n, m=1, 2, 3 … in Eq. (40) for the flexural mode and the complex wave number ς are calculated by fixing the dimensionless frequency Ω.

Square and Hexagonal cross-sections

In case of longitudinal vibration of square and hexagonal cross-sectional cylinders, the displacements are symmetrical about both major and minor axes since both the cross-sections are symmetric about both the axes. Therefore the frequency equation is obtained by choosing both terms of n and m are chosen as 0, 2, 4, 6… in Eq. (38). During flexural motion, the displacements are antisymmetrical about the major axis and symmetrical about the minor axis. Hence the frequency equation is obtained by choosing n, m=1, 3, 5,… in Eq. (40).

Dispersion curves

The results of longitudinal modes of vibrations are plotted in the form of dispersion curves, the notations Lm denotes longitudinal mode in all the graphs. The 1 refers the first mode and 2 the second and so on. From the graphs obtained, it can be noticed that the dispersion for the plates in the fundamental mode is high. But in higher modes, the dispersive curves are almost straight, along the direction of propagation. Hence it may be concluded it has a non-dispersive behaviors. It is also to be mentioned that the cross over points in various curves of different modes indicate that for a particular frequency of vibration, the mechanical energy is communicative between its directions of wave propagation in the respective mode. A comparison between the different modes of non-dimensional frequency spectrum for longitudinal modes of triangular cross-sectional plates is shown in Fig 3. From the Fig. 3, it is observed that, the non-dimensional frequencies are increases by increasing the modes of vibrations. A dispersion curve is drawn between different modes of vibrations versus non-dimensional frequency Ω for a square cross-sectional plate, it is shown in Fig.4. From the Fig.4, it is observed that the non-dimensional frequency is increases by increasing its modes of vibration. Graphs are drawn between mode and non-dimensional frequency of longitudinal modes of triangular and hexagonal cross-sectional plate and are shown in Figs. 5 and 6. From Figs. 5 and 6, it is observed that the non-dimensional frequency Ω increases as modes of vibration increases for a particular period. At some points the energy level decreases as modes of vibration increases. The cross over points in the trend line indicates that the mechanical energy is transferred between the modes of vibrations.

![Fig 3. Mode versus non-dimensional frequency for longitudinal mode of triangular cross-sectional plate](image-url)
Conclusions

Wave propagation in non-homogenous transversely isotropic electro-magneto-elastic plate of polygonal cross-section is studied using the Fourier expansion collocation method. The frequency equations are obtained from the polygonal cross-sectional boundary conditions, since the boundary is irregular in shape; it is difficult to satisfy the boundary along the surface of the plate directly. Hence,
the Fourier expansion collocation method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method applicable for complex roots. The computed non-dimensional frequencies are plotted in the form of dispersion curves and their characteristics are discussed.

Acknowledgement

Dr. P. Ponnusamy is thankful to University Grants Commission, New Delhi, for funding to undertake this research work, Ref. F. No. 39-46 / 2010 (SR), and the Directorate of Collegiate Education, Tamil Nadu, for the permission rendered towards the same. His gratitude also extends to Govt. Arts College (Autonomous), Coimbatore-18, for providing with the facilities to take up this work.

References

Appendix A

\[e_n^1 = \left[\beta J_\beta (\alpha r) + (\alpha r) J_{\beta + 1} (\alpha r) \right] \left(L + \sin^2 (\theta - \gamma) \right) - \left(\beta J_\beta + 1 (\alpha r) + (\alpha r) J_{\beta + 1} (\alpha r) \right) \left(L + \cos^2 (\theta - \gamma) \right) \]

\[e_n^2 = 0 \]

\[e_n^3 = 0 \]

\[f_n^1 = 2 \left\{ \beta J_\beta (\alpha r) + (\alpha r) J_{\beta + 1} (\alpha r) \right\} \cos n \theta \sin 2(\theta - \gamma) + 2n \left\{ (\beta - 1) J_\beta (\alpha r) - (\alpha r) J_{\beta + 1} (\alpha r) \right\} \sin n \theta \cos 2(\theta - \gamma) \]

\[f_n^2 = 0 \]

\[f_n^3 = 0 \]

\[f_n^4 = 2n \left\{ \delta J_\delta (kr) - (kr) J_{\delta + 1} (kr) \right\} \cos n \theta \sin 2(\theta - \gamma) + \left[2 \left\{ \delta J_\delta (kr) - (kr) J_{\delta + 1} (kr) \right\} + (kr)^2 - \delta^2 \right] J_\delta (kr) \sin n \theta \cos 2(\theta - \gamma) \]