Determination of effective atomic number and effective electron densities of some inorganic compounds for compton effect in the gamma energy range 280KEV to 1115KEV

S.Prasannakumar1,2 and T. K.Umesh2
1JSS Academy of Technical Education, Bangalore 560060, India.
2DOS in Physics, University of Mysore, Manasagangotri, Mysore 570006, India.

ABSTRACT
In this paper, we report the effective atomic number and effective electron densities of some inorganic compounds at three scattering angles 60°, 80° and 100° on a goniometer assembly for Compton Effect in the gamma energy range 280keV to 1115keV. An ORTEC model 23210 gamma-x high purity germanium detector (HpGe) has been used to record the data along with a personal computer based MCA in the angular region 50°-110°. It is observed that the effective atomic numbers can be obtained by simply adding the Z-values of the constituent elements as per the chemical formula of the compound in accordance with the literature [5]. The results so obtained with respect to the inorganic samples of interest that the effective atomic number and effective electron densities are first of their kind at these energy ranges and are expected to be important in a variety of applications of Radiation Physics and Chemistry.

Introduction
Increased use of radioactive isotopes in various fields of science and technology warrants a need for a detailed knowledge of the processes involved in the interaction of gamma rays with matter. In the energy region 200keV to 1500keV, the most dominant mode of interaction of gamma rays with matter is the incoherent (Compton) scattering by atomic electrons.

The interaction of gamma rays with elements and other materials is usually understood in terms of quantities such as mass attenuation coefficient, the differential incoherent scattering cross sections, mass energy absorption coefficient, effective atomic number \(Z_{\text{eff}}\), electron density \(N_{\text{eff}}\) and Compton profiles etc.

In the energy region 2MeV down to about 200keV, Compton scattering process is known to be a significant contributor to gamma ray interaction with materials.

The effective atomic number \(Z_{\text{eff}}\), indicates on an average, the number of electrons of the material that actively participate in the photon-atom interaction. It depends on the incident energy as well as the atomic number of the constituent elements. The value of \(Z_{\text{eff}}\) also finds its use in the computation of other useful quantities like the absorbed dose and built up factor.

The electron density \(N_{\text{eff}}\) is the measure of the probability of an electron being present at a specific location.

The precise knowledge of effective atomic number and electron density are used in radiation dosimetry and medical imaging, when the cross sectional anatomy is generated by computer tomography (CT) scan. The knowledge of effective atomic number and electron density of the biologically important compounds is necessary in the energy range of medical interest [4]. Hence, a good knowledge of these parameters of the materials in this energy region will be quite useful.

A literature survey reveals the fact that, the measurement of the effective atomic numbers and electron densities of inorganic compounds of present interest are relatively scarce. Hence we felt that, it is worthwhile to determine the effective atomic numbers and electron densities of some inorganic compounds such as LiOH, NaF, NaCl, NiO, CuCl, KBr and AgCl at three incident gamma ray energies 279.1keV, 661.6keV and 1115.5keV and three scattering angles of 60°, 80° and 100°.

Theory
In the impulse approximation, the observed differential bound electron incoherent scattering cross section \(\sigma_{0}(\theta)\) per atom can be expressed in terms of the KN cross-sections \(\sigma_{KN}(\theta)\) per electron and the incoherent scattering function \(S(X,Z)\); whose value is a measure of the electron binding effects in the atom as

\[
\sigma_{0}(\theta) = \sigma_{KN}(\theta) S(X,Z) \tag{1}
\]

Here, \(X = (\sin(\theta/2)/\lambda (\text{Å}))\), where \(\lambda\) is the wavelength corresponding to the incident photon.

When the scattering electron is completely free from atomic binding effects, \(S(X, Z) = Z\). With binding effects it will be slightly less than \(Z\). Thus for larger scattering angles and energies in the present study, since the electron binding effects are quite negligible, (1) can be rewritten as

\[
\sigma_{0}(\theta) = \sigma_{KN}(\theta) Z \tag{2}
\]

In eq.(2), if the scatterer is a pure element, then \(Z\) is its atomic number. If the scatterer is a composite material such as a chemical compound or a mixture then \(Z\) is its effective atomic number, \(Z_{\text{eff}}\).

Procedure to evaluate effective atomic number, \(Z_{\text{eff}}\)
In the present study, first, the Klein-Nishina formula [1] was used to calculate the theoretical differential free electron scattering cross sections, \(\sigma_{KN}(\theta)\), at six scattering angles, \(\theta = 50^\circ, 60^\circ, 70^\circ, 80^\circ, 90^\circ\) and \(100^\circ\) for three gamma ray energies \(E = 279.2\text{keV}, 661.6\text{keV}\) and \(1115.5\text{keV}\). Further, In-In plot of
values of \(\sigma_{KN}(\theta) \) versus energy \(E \) in keV produces straight lines with the slope \(k_\theta \) (table 1) at each scattering angle of interest (figure 1). Based on these plots, by a proper regression analysis, a handy and convenient expression of the form was obtained.

\[
\sigma_{KN}(\theta) = 403.567 E^{-k_\theta}
\]

(3)

However, its only limitation was that it could yield the values of \(\sigma_{KN}(\theta) \) only at specific angles \(\theta = 50^o, 60^o, 70^o, 80^o, 90^o \) and \(100^o \). It would be more beneficial if eq (3) could be further modified suitably so that it can yield \(\sigma_{KN}(\theta) \) values at any angle amenable for measurement in the range \(50^o-100^o \). For this purpose, the \(k_\theta \) values were once again plotted versus the scattering angle \(\theta \) (figure 2). It was found by a suitable curve fitting procedure a second order polynomial of the form

\[
k_\theta = a + b\theta + c\theta^2
\]

(4)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_\theta)</td>
<td>0.4102</td>
<td>0.4513</td>
<td>0.4862</td>
<td>0.5130</td>
<td>0.5310</td>
<td>0.5416</td>
</tr>
</tbody>
</table>

where the values of best fit coefficients are \(a = -8.17E-2 \), \(b = -8.53E-3 \) and \(c = 3.93E-5 \)

If \(a_\theta(\theta) \) can be experimentally determined for the sample of interest at any angle \(\theta \) in the range \(50^o - 100^o \) in this energy grid [2, 3], then the \(Z_{eff} \) of the sample can be determined by using equations 1 and 2 via equations (3) and (4).

Procedure to evaluate Effective electron density, \(N_{eff} \)

The effective electron densities \(N_{eff} \) have been calculated based on the expression [4] for effective electron density as

\[
N_{eff} = (N_A Z_{eff})/A_{eff}
\]

where \(N_A \) is the Avogadro number in and \(A_{eff} \) is the effective atomic weight, which is the molecular weight of the sample divided by the total number of all kind of the atoms present [4].

Experimental details:

In the present investigation, the effective atomic number and effective electron densities are determined on a goniometer assembly by making use of the \(^{137}\)Cs radioactive source emitted gamma radiations of 661.6keV. It was procured in the form of a radiographic capsule from Radiochemical Centre, Amersham, U.K. The experimental setup was as shown in figure 3. The experiment was repeated with the other sources \(^{203}\)Hg and \(^{60}\)Zn which emit 279.1keV and 1115.5keV gamma rays respectively which were procured in the form of radiographic capsules from the Bhabha Atomic Research Centre, Mumbai, India.

Table 2 . Purities and molecular weights of the compounds

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Compound</th>
<th>Molecular weight</th>
<th>Percentage purity</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LiOH</td>
<td>23.95</td>
<td>99.00</td>
<td>Sarabhai-Merck Pvt., Ltd</td>
</tr>
<tr>
<td>2</td>
<td>NaF</td>
<td>41.99</td>
<td>99.00</td>
<td>E. Merck, Germany</td>
</tr>
<tr>
<td>3</td>
<td>NaCl</td>
<td>58.44</td>
<td>99.00</td>
<td>Sarabhai-Merck Pvt., Ltd</td>
</tr>
<tr>
<td>4</td>
<td>NiO</td>
<td>74.69</td>
<td>99.80</td>
<td>British Drug Houses, Ltd</td>
</tr>
<tr>
<td>5</td>
<td>CuCl</td>
<td>99.00</td>
<td>99.00</td>
<td>British Drug Houses, Ltd</td>
</tr>
<tr>
<td>6</td>
<td>KBr</td>
<td>119.00</td>
<td>99.99</td>
<td>Reidel, West Germany</td>
</tr>
<tr>
<td>7</td>
<td>AgCl</td>
<td>143.32</td>
<td>99.00</td>
<td>British Drug Houses, Ltd</td>
</tr>
</tbody>
</table>

In the calculation, first, we have measured the differential incoherent scattering cross sections of the inorganic compounds at the scattering angles \(60^o, 80^o \) and \(100^o \) on a goniometer assembly [2, 3] for gamma rays of radiation energy 279.1keV, 661.6keV and 1115.5keV emitted by \(^{203}\)Hg, \(^{137}\)Cs and \(^{60}\)Zn sources and the results so obtained are used in the equation (1)
and (2) via equations (3) awed (4) to determine Z_{eff}. In the second part of the calculation, the same Z_{eff} were used to get their Effective electron densities (electrons/gram) N_{eff}.

Results and Discussion:

In the present work, it was essential to assess the extent of approximation on Z_{eff} rendered as a result of using equation (2) in place of equation (1) (treating the electron binding effects as negligible). This was done by determining the value of $S(X, Z)$ at each X value corresponding to the scattering angle and incident energy. In the present study, the value of X was in the range 9.5 Å$^{-1}$- 68.9 Å$^{-1}$ for the angles in the range 50$^\circ$- 100$^\circ$ and energies in the grid 279.1 keV- 1115.5 keV respectively. From the tabulated data of Hubbell et al [1] (please refer figures 45 and 47 of this reference), it was observed that the quantity $(S(X, Z)/Z)$ remains almost a constant (≈ 1) beyond $X=9.5$ Å$^{-1}$. However at $X=9.5$ Å$^{-1}$, the error due to this free electron approximation on Z_{eff} was estimated by using the Hubbell et al [2] tables to be about 0.8% for $Z=26$ and it increased to about 2% for $Z=82$. However for other X values of the present work, this error was negligible for all Z in this range.

Table 3: Effective atomic number of samples and Effective electron density (electrons/gram) (Experimental errors are to the extent of 2–3%).

<table>
<thead>
<tr>
<th>Inorganic compound</th>
<th>279.1 keV 60$^\circ$ 80$^\circ$ 100$^\circ$</th>
<th>60$^\circ$ 80$^\circ$ 100$^\circ$</th>
<th>60$^\circ$ 80$^\circ$ 100$^\circ$</th>
<th>Mean Z_{eff} $N_{\text{eff}}*E24$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiOH</td>
<td>12.1 11.8 11.9 12.3 12.1 12.2 11.7 12.0 11.9 12.0</td>
<td>0.906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaF</td>
<td>20.2 19.6 19.8 20.5 20.2 20.3 19.5 20.0 19.9 20.0</td>
<td>0.574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>28.3 27.4 27.6 28.2 28.3 28.4 27.3 27.9 27.9 27.9</td>
<td>0.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NiO</td>
<td>36.4 35.2 35.6 36.9 36.5 36.5 35.2 35.9 35.8 35.6</td>
<td>0.581</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CuCl</td>
<td>46.5 45.0 45.5 46.2 46.6 46.7 44.8 45.9 45.8 45.8</td>
<td>0.559</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBr</td>
<td>54.4 52.8 53.3 55.4 54.7 54.9 52.7 54.0 53.8 54.0</td>
<td>0.547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AgCl</td>
<td>63.9 62.4 63.1 65.6 64.8 65.0 62.4 63.9 63.7 63.9</td>
<td>0.537</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From table 3, it was interesting to note that the Z_{eff} for a given sample was almost a constant at all angles and energies of present interest. The arithmetic average of all the Z_{eff} values of each sample at all the angles and energies of present interest have been tabulated in table 3. It can also be observed that among the various inorganic samples studied while LiOH possessed the lowest Z_{eff} of 12, AgCl exhibited the highest Z_{eff} of 63.9 for Compton effect. It is also observed that for Compton effect in the present energy region of interest, the effective atomic number of the samples used can be obtained by simply adding the Z-values of the constituent elements as per the chemical formula of the compound [5].

The effective electron densities of the samples ranged from minimum 0.537 * 1024 electrons/gram for AgCl to maximum of 0.906 * 1024 electrons/gram for LiOH.

Acknowledgement:

The authors thank the University of Mysore, Mysore, for providing the requisite facilities for carrying out this work. One of the authors (SPK) would like to thank the management of JSSATE, Bangalore, for the support and encouragement during the course of the present investigation.

References

