Notes on anti s-fuzzy subfields of a field
M. Vasu and D. Sivakumar
Department of Mathematics, Annamalai University, Annamalainagar- 608002, Chidambaram, India.

ARTICLE INFO
Article history:
Received: 6 September 2013;
Received in revised form: 22 February 2014;
Accepted: 1 March 2014;

ABSTRACT
In this paper, we made an attempt to study the algebraic nature of anti S-fuzzy subfield of a field.

© 2014 Elixir All rights reserved

Introduction
After the introduction of fuzzy sets by L.A.Zadeh[15], several researchers explored on the generalization of the concept of fuzzy sets. The notion of fuzzy subgroups, anti-fuzzy subgroups, fuzzy fields and fuzzy linear spaces was introduced by Biswas.R[4, 5]. In this paper, we introduce the some

Definition:
Let X be a non-empty set. A fuzzy subset A of X is a function A : X → [0, 1].

Definition:
A S-norm is a binary operation S : [0, 1]×[0, 1] → [0, 1] satisfying the following requirements:
(i) S(0, x) = x, S(1, x) = 1 (boundary condition)
(ii) S(x, y) = S(y, x) (commutativity)
(iii) S(x, y) ≥ S (S(x, y), z) (associativity)
(iv) if x ≤ y and w ≤ z, then S(x, w) ≤ S (y, z) (monotonicity).

Definition:
Let (F, +, ·) be a field. A fuzzy subset A of F is said to be an anti S-fuzzy subfield (anti fuzzy subfield with respect to S-norm) of F if the following conditions are satisfied:
(i) A(x+y) ≤ S (A(x), A(y)), for all x and y in F,
(ii) A(− x) ≤ A(x), for all x in F,
(iii) A(xy) ≤ S (A(x), A(y)), for all x and y in F,
(iv) A(x−1) ≤ A(x), for all x ≠ 0 in F, where 0 is the additive identity of F.

Definition:
Let (F, +, ·) and (F', +, ·) be any two fields. Let f : F → F' be any function and A be an anti S-fuzzy subfield of F, V be an anti S-fuzzy subfield in f(F) = F', defined by V(y) = inf_{x ∈ f−¹(y)} A(x), for all x in F and y in F'. Then A is called a preimage of V under f and is denoted by f−¹(V).

Definition:
Let A and B be any two fuzzy subsets of sets G and H, respectively. The anti-product of A and B, denoted as AxB, is defined as AxB = { ((x, y), AxB(x, y)) | for all x in G and y in H }, where AxB(x, y) = max { A(x), B(y) }, for all x in G and y in H.

Definition:
Let A be a fuzzy subset in a set S, the strongest fuzzy relation on S, that is a fuzzy relation on A is V= {((x,y), V(x,y)) / x and y in S } given by V(x, y) = max { A(x), A(y) }, for all x and y in S.

Definition:
Let A be an anti S-fuzzy subfield of a field (F, +, ·) and a in F. Then the pseudo anti S-fuzzy coset (aA)^D is defined by ((aA)^D)(x) = p(a)A(x), for every x in F and for some p in P.

Properties:
Theorem: If A is an anti S-fuzzy subfield of a field (F, +, ·), then A(− x) = A(x), for all x in F and A(x−1) = A(x), for all x ≠ 0 in F and A(x) ≥ A(0), for all x in F and A(x) ≥ A(1), for all x in F, where 0 and 1 are identity elements in F.

Proof:
For x in F and 0, 1 are identity elements in F. Now, A(x) = A(− (− x)) = A(− x) = A(x). Therefore, A(x) = A(x), for all x in F. And, A(x) = A(x−1) = A(−1)x ≤ A(x). Therefore, A(x−1) = A(x), for all x ≠ 0 in F. And, A(0) = A(−x−1) ≤ S (A(x), A(−x−1)) = A(x). Therefore, A(0) ≤ A(x), for all x in F. And, A(1) = A(xx−1) ≤ S(A(x), A(x−1)) = A(x). Therefore, A(1) ≤ A(x), for all x ≠ 0 in F.

Theorem: If A is an anti S-fuzzy subfield of a field (F, +, ·), then
(i) A(x−y) = A(0) gives A(x) = A(y), for all x and y in F,
(ii) A(xy) = A(1) gives A(x) = A(y), for all x and y ≠ 0 in F, where 0 is the additive identity of F.

Proof:
Let x and y in F and 0, 1 are identity elements in F. (i) Now, A(x) = A(x−y+y) ≤ S (A(x−y), A(y)) = S (A(0), A(y)) = A(y) = (A(x−(x−y))) ≤ S(A(x−y), A(x−y)) = S (A(0), A(x)) = A(x), Therefore, A(x) = A(y), for all x and y in F. (ii) Now, A(x) = A(xy) ≤ S(A(xy), A(y)) = S (A(1), A(y)) = A(y) = A(x−(x−y)) ≤ S (A(x−y), A(x−y)) ≤ S (A(0), A(x)) = A(x), Therefore, A(x) = A(y), for all x and y ≠ 0 in F.

Theorem: Let A be a fuzzy subset of a field (F, +, ·). If A(e) = A(e') = 0, A(x−y) ≤ S (A(x), A(y)), for all x and y in F and A(xy)^D ≤ S (A(x), A(y)), for all x and y ≠ e in F, then A is an anti S-fuzzy subfield of F, where e and e' are identity elements of F.

Proof:
Let e and e' be identity elements of F and x and y in F. Now A(x−y) = A(e−x) ≤ S (A(e), A(x)) = S (A(0), A(x)) = A(x), Therefore, A(x−y) ≤ S (A(e), A(x)) = S (O, A(x)) = A(x), Therefore, A(xy)^D ≤ S (A(x), A(y)), for all x and y on F. And A(ax+y) = A(x−(x−y)) ≤ S(A(x), A(y)) ≤ S (A(x), A(y)) = A(x), Therefore, A(xy) ≤ S (A(x), A(y)), for all x and y in F. And A(x−y)^D ≤ S (A(x), A(y)) ≤ S (A(x), A(y)) ≤ S (A(x), A(y)) ≤ S (A(x), A(y)). Therefore, A(xy)^D ≤ S (A(x), A(y)), for all x and y in F.
(A(x), A(y)). Therefore, A(xy) ≤ S(A(x), A(y)), for all x and y ≠ e in F. Hence A is an anti S-fuzzy subfield of F.

Theorem: If A is an anti S-fuzzy subfield of a field \(F, (+, \cdot) \), then \(H = \{ x / x_\in F : A(x) = 0 \} \) is either empty or is a subfield of F.

Proof: If no element satisfies this condition, then H is empty. If x and y in H, then \(A(x) = A(y) = 0 \). Therefore, A\((x+y)\) = 0, for all x and y in F. Hence, \(H = \{ x / x_\in F : A(x) = 0 \} \) is either empty or is a subfield of F.

Theorem: If A is an anti S-fuzzy subfield of a field \(F, (+, \cdot) \), then \(H = \{ x \in F : A(x) = A(e) \} \) is either empty or is a subfield of F, where e and e′ are identity elements of F.

Proof: If no element satisfies this condition, then H is empty. If x and y satisfies this condition, then A\((x+y)\) = A(e), for all x and y in F. Hence, A\((x+y)\) = A(e), for all x and y in F. Therefore, A\((x+y)\) = S(A(x), A(y)).

Theorem: Let A be an anti S-fuzzy subfield of a field \(F, (+, \cdot) \). Then \(A(x) = A(y) = 0 \), for all x and y ≠ e in F. Hence A is either empty or is a subfield of F.

Proof: Let x and y in F. By the definition A\((x+y)\) = S(A(x), A(y)), which implies that 1 ≤ S(A(x), A(y)). Therefore, either A\((x+y)\) = 1 or A\((x+y)\) = 0, for all x and y in F. By the definition A\((x+y)\) = S(A(x), A(y)), which implies that 1 ≤ S(A(x), A(y)). Therefore, either A\((x+y)\) = 1 or A\((x+y)\) = 0, for all x and y ≠ e in F.

Theorem: Let (F, +, \cdot) be a field. If A is an anti S-fuzzy subfield of F, then A\((x+y)\) = S(A(x), A(y)), for all x and y in F and A\((xy)\) = S(A(x), A(y)), for all x ≠ 0 and y ≠ 0 in F. Hence A is an anti S-fuzzy subfield of GxH. **Proof:** Let A be an anti S-fuzzy subfield of a field \(F, (+, \cdot) \). Then A\((x+y)\) = S(A(x), A(y)), for all x and y in F and A\((xy)\) = S(A(x), A(y)), for all x ≠ 0 and y ≠ 0 in F. Hence A is an anti S-fuzzy subfield of GxH.
\(B(y_1), B(y_2)) = S \left(\max (A(x_1), B(y_1)) , \max (A(x_2), B(y_2)) \right) = S(AxB(x_1, y_1), AxB(x_2, y_2)). \)

Therefore, \(AxB(x_1, y_1) - (x_2, y_2) \leq \max (AxB(x_1, y_1), AxB(x_2, y_2)) \), for all \(x_1 \) and \(x_2 \) in \(G \) and \(y_1 \) and \(y_2 \) in \(H \). And, \(AxB(x_1, y_1), (x_2, y_2)^2 \} = \max (AxB(x_1, y_1), B(y_2)) \), \(\max (S(A(x_1), B(y_1)), S(A(x_2), B(y_2))) = S(\max (A(x_1), B(y_1)), \max (A(x_2), B(y_2))) = \max (S(A(x_1), B(y_1)), S(A(x_2), B(y_2))). \)

Therefore, \(AxB(x_1, y_1), (x_2, y_2)^2 \} = \max (S(A(x_1), B(y_1)), S(A(x_2), B(y_2))), for all \(x_1 \) and \(x_2 \) not \(0 \) in \(G \) and \(y_1 \) and \(y_2 \) not \(0 \) in \(H \). Hence anti-product \(AxB \) is an anti \(S \)-fuzzy subfield of \(GxH \).

Theorem: Let \(A \) and \(B \) be fuzzy subsets of the fields \(G \) and \(H \), respectively. Suppose that \(0 \), \(1 \), \(0, 1 \), are the identity elements of

(i) \(B(0) \leq A(x) \), for all \(x \) in \(G \) and \(B(1) \leq A(x) \), for all \(x \neq 0 \) in \(G \).

(ii) \(A(0) \leq B(y) \), for all \(y \) in \(H \) and \(A(1) \leq B(y) \), for all \(y \neq 0 \) in \(H \).

Proof: Let the anti-product \(AxB \) be an anti \(S \)-fuzzy subfield of \(GxH \). By contraposition, suppose that none of the statements (i) and (ii) holds. Then we can find \(a \) in \(G \) and \(b \) in \(H \) such that \(A(a) < B(0) \), \(A(a) < B(1) \) and \(B(b) < A(0), B(b) < A(1) \). We have, \(AxB(a, b) = \max (A(a), B(b)) < \max (A(0), B(0)) = \max (0, 0) = \max (A(1), B(1)) = \max (A(a), B(b)). \)

Thus anti-product \(AxB \) is not an anti \(S \)-fuzzy subfield of \(GxH \). Hence either \(B(0) \leq A(x) \), for all \(x \) in \(G \) and \(B(1) \leq A(x) \), for all \(x \neq 0 \) in \(G \).

Theorem: Let \(A \) and \(B \) be fuzzy subsets of the fields \(G \) and \(H \), respectively and the anti-product \(AxB \) is an anti \(S \)-fuzzy subfield of \(GxH \). Then the following are true:

(i) \(A(x, 1) \geq A(x) \), \(A(x) \geq A(1) \), and \(A(1) \geq A(x) \) for all \(x \) in \(G \) and \(y \) in \(H \).

(ii) \(A(x, y) = S(\max (A(x), A(y)), \max (A(x), A(y))) = S(\max (S(A(x), A(y)), S(A(x), A(y)))) \), \(\max (A(x, y), A(x, y)) = S(\max (S(A(x), A(y)), S(A(x), A(y)))) \), \(\max (A(x, y), A(x, y)) = S(\max (S(A(x), A(y)), S(A(x), A(y)))) \), \(A(x, y) = S(\max (A(x), A(y)), \max (A(x), A(y))) = S(\max (S(A(x), A(y)), S(A(x), A(y)))) \).

Hence \(B \) is an anti \(S \)-fuzzy subfield of \(H \). Thus (ii) is proved. And (iii) is clear.

Theorem: Let \(A \) be a fuzzy subset of a field \(F, +, \cdot \) and \(B \) be the anti-strongest \(S \)-fuzzy relation of \(F \). Then \(A \) is an anti \(S \)-fuzzy subfield of \(F \) if and only if \(V \) is an anti \(S \)-fuzzy subfield of \(FxF \).

Proof: Suppose that \(A \) is an anti \(S \)-fuzzy subfield of \(F \). Then for any \(x = (x_1, x_2), y = (y_1, y_2) \) in \(F \). We have, \(V(x+y) = V((x_1, x_2) − (y_1, y_2)) = V(x_1 − y_1, x_2 − y_2) \geq \max (A(x_1), y_1), A(x_2) \leq \max (A(x_1), A(x_2)) \).

Therefore, \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \). And \(V((x_1, x_2) − (y_1, y_2)) = V((x_1, x_2) − (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Therefore, \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \). And \(V((x_1, x_2) − (y_1, y_2)) = V((x_1, x_2) − (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Therefore, \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \). And \(V((x_1, x_2) − (y_1, y_2)) = V((x_1, x_2) − (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Hence \(A \) is an anti \(S \)-fuzzy subfield of \(F \).}

Theorem: Let \(A \) be an anti \(S \)-fuzzy subfield of a field \(F, +, \cdot \) and \(f \) be an isomorphism from a field \(F \) onto \(H \). Then \(A \circ f \) is an anti \(S \)-fuzzy subfield of \(F \times F \).

Proof: Suppose that \(A \) is an anti \(S \)-fuzzy subfield of \(F \). Then for any \(x = (x_1, x_2), y = (y_1, y_2) \) in \(F \). We have, \(V(x+y) = V((x_1, x_2) − (y_1, y_2)) = V((x_1, x_2) − (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \). And \(V((x_1, x_2) − (y_1, y_2)) = V((x_1, x_2) − (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Therefore, \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Hence \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Therefore, \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Therefore, \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Therefore, \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Therefore, \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Therefore, \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).

Therefore, \(V(x+y) = S(V(x, x) - (y_1, y_2)) = S(V(x, x) - (y_1, y_2)) , \) for all \(x \) and \(y \) in \(F \).
Proof: Let \(x \) and \(y \) in \(F \) and \(A \) be an anti S-fuzzy subfield of a field \(H \). Then we have, \((A\circ f)(x - y) = A(f(x) + f(-y)) = A(f(x) - f(y)) \leq S(A(f(x)), A(f(y))) \leq S((A\circ f)(x), (A\circ f)(y))\), which implies that \((A\circ f)(x - y) \leq S((A\circ f)(x), (A\circ f)(y))\), for all \(x \) and \(y \) in \(F \). And, \((A\circ f)(xy^{-1}) = A(f(xy^{-1})) = A(f(x)f(y^{-1})) = S(A(f(x)), A(f(y))) \leq S((A\circ f)(x), (A\circ f)(y))\), which implies that \((A\circ f)(xy^{-1}) \leq S((A\circ f)(x), (A\circ f)(y))\), for all \(x \) and \(y \neq 0 \) in \(F \). Therefore \((A\circ f)\) is an anti S-fuzzy subfield of a field \(F \).

Theorem: If \(A \) is an anti S-fuzzy subfield of a field \((F, +, \cdot)\), then the pseudo anti S-fuzzy coset \((aA)^p\) is an anti S-fuzzy subfield of a field \(F \), for every \(a \in F \).

Proof: Let \(A \) be an anti S-fuzzy subfield of a field \((F, +, \cdot)\). For every \(x \) and \(y \) in \(F \), we have, \(((aA)^p)(x - y) = p(a)A(x - y) \leq p(a)S(A(x), A(y)) = S((aA)^p)(x), (aA)^p(y))\). Therefore, \(((aA)^p)(x - y) \leq S((aA)^p)(x), (aA)^p(y))\), for all \(x \) and \(y \) in \(F \). And for every \(x \) and \(y \neq 0 \) in \(F \), \(((aA)^p)(xy^{-1}) = p(a)A(xy^{-1}) \leq p(a)S(A(x), A(y)) = S((aA)^p)(x), (aA)^p(y))\). Therefore, \(((aA)^p)(xy^{-1}) \leq S((aA)^p)(x), (aA)^p(y))\), for all \(x \) and \(y \neq 0 \) in \(F \). Hence \((aA)^p\) is an anti S-fuzzy subfield of a field \(F \).

Reference