Static Analysis of Simply supported plate
Subrata Kr. Mandal and S.Y. Pujar
CSIR-Central Mechanical Engineering Research Institute, Durgapur, India.

ARTICLE INFO

Article history:
Received: 27 June 2013;
Received in revised form: 24 July 2013;
Accepted: 31 July 2013;

Keywords
Plate deflection,
Singularity,
Software,
Analysis.

ABSTRACT
This research work deals with analysis of simply supported rectangular plate under two
different types of loading viz. centrally applied point load and uniformly distributed load
(UDL). Four different sizes of plates were considered depending on the shape of material
that allowed in the experiments. These plates were assumed to be constructed by isotropic
material and subjected to point loading & UDL. The plates were supported under standard
simply supported conditions at the two ends (left & right end views from the operator) so
that the moment singularity is assumed at the tip of internal line support. Plate deflections
were measured for all the plates under different loading conditions. These values were then
validated using the ANSYS software. The results then compared and error was found out.
The physical quantities of the plates and the extent of contact related to the level of loading
in the case of free contact are provided in the present work.

Introduction
A flat plate is generally considered to be a thin flat component that is subjected to load conditions that cause
deflections transverse of the plate. Therefore, the loads are transverse pressures, transverse forces and moment vectors lying
in the plane. Those loads are resisted mainly by bending. It is assumed that in plane membrane stresses are not present and
that the transverse displacements are “small”. Generally, “small” is taken to mean a deflection that is less than half the thickness
of the plate.

Focusing on the problems of flat plate with single boundary
condition, there are several experimental and numerical methods
used to analyze the problem. The numerical methods are
generally found to be unsatisfactory (Leissa et al., 1969),
especially at the transition point of discontinuous boundary due
to the problem singularity (Williams, 1952), and then, the use of
integral transform (Sneddon, 1972) is one of the appropriately
analytical methods to solve the problem which leads to
determine the solution of an integral equation.

Much attention has been paid by many researchers to
investigate the static bending problems (Yang, 1968; Keer and
Sve, 1970; Kiattikomol et al., 1974; Kiattikomol and Porn-
anupakul,1985; Kiattikomol and Sriswadi, 1988), vibration
characteristics, and stability and buckling behaviours (Leissa,
1969; Keer and Stahl, 1972; Stahl and Keer, 1972). However,
the mentioned works are the problems of plate where the
supports have the same level. Dundurs et al. (1974) first
investigated the contact between the plates and the sagged
supports in which the sagged supports are located at the plate
edges. For the cases of sagged support placed in domain of the
plate, recently, Somponjaroensook and Kiattikomol (2006)
treated the two problems of rectangular plate simply supported
on the two opposite edges and either free or clamped on the two
other edges with an internal line sagged support.

However during the development stage of customized
mechanical structures it becomes necessary to observe the
deflections and verify the load carrying capacity of that
structure. In that case application of strain gauge, Data
acquisition system, sensors etc. are being used now days. But
these techniques are quite expensive and creates extra burden for
a small manufacturer. But at the same time it is essential to do
some kind of load carrying analysis through experiment before
fabricate the entire structure. This paper aims to find out the
errors encountered during simple experiments after application
of load for some selected simply supported plates.

Therefore, this research considers the problem of simply
supported rectangular plate with two end supports. The solution
technique is applied here is the experimental and results
validation with ANSYS 5.4 to find out the error associated with
the experimental technique.

Rectangular plate

Figure 1 shows some of the typical boundary conditions
that can be applied to the edges of a plate. A segment of a plate
can be fixed or enacted (left), simply supported (center), or
mixed supported (right), or have a free edge. A simply
supported condition usually means that the transverse
displacement is zero on that segment but the rotation tangent to
the segment is unknown. A fixed supported condition usually
means that the rotation vector tangent to the segment is also
zero. A free edge is stress free. That is, it has no moment or
transverse shear resultants acting along its length.

© 2013 Elixir All rights reserved
Fig. 1: Some typical boundary condition options on rectangular plates

Deflection of Beams

The deformation of a beam is usually expressed in terms of its deflection from its original unloaded position. The deflection is measured from the original neutral surface of the beam to the neutral surface of the deformed beam. The configuration assumed by the deformed neutral surface is known as the elastic curve of the beam. In the present research work deformation has been measured for different plates as described afterward considering the plate equivalent to beam.

Fig. 2: Typical deflection of a simply supported beam

Materials & methods

Four different sizes of plates are considered depending on the shape of material that allowed in the experiments. The plate is assumed to be constructed by isotropic material and subjected to point loading. The sizes are 550x600x4mm, 550x600x6mm, 550x600x8mm & 550x600x10mm. All are isotropic, structural steel.

Table 1: Description of various sizes plates used in the experiments

<table>
<thead>
<tr>
<th>Plate description</th>
<th>Size (a x b x t) mm</th>
<th>Material (isotropic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate-I</td>
<td>550 x 600 x 4</td>
<td>Structural steel</td>
</tr>
<tr>
<td>Plate-II</td>
<td>550 x 600 x 6</td>
<td>Structural steel</td>
</tr>
<tr>
<td>Plate-III</td>
<td>550 x 600 x 8</td>
<td>Structural steel</td>
</tr>
<tr>
<td>Plate-V</td>
<td>550 x 600 x 10</td>
<td>Structural steel</td>
</tr>
</tbody>
</table>

Fig. 3 shows the Plate-I with simply supports. Ten node points on the top surface of the plate were selected to find out the deformation. Similar work was done for the other plates as required.

Fig. 3: Rectangular Plate-I with simply supports

The experiments were conducted in the institute laboratory. All the plates were chosen as per the specified sizes of structural steel. The plates were designated as Plate-I, Plate-II, Plate-III and Plate-IV as discussed in the Table 1.

Experiments with point loading

Initially Plate-I was kept on a fixture specially designed for the experiment above a surface table. Ten numbers of node points were selected randomly above the Plate-I. Ten numbers of dial gauges were fixed under the plate at these nodes. All the gauges were calibrated before the experiments and set to “0” (zero) reading. Point load is applied at the centre of the plate with ranges from 4 - 20 kg. Deformations were noted after the application of load. Fig. 4 shows the experimental set up for Plate-I. Experiments were carried out for Plate-I. Similar experiments repeated for the Plate-II, Plate-III and Plate-IV successively and the corresponding data were observed.

Fig. 4: Experimental setup with point loading

Experiments with point UDL

In a way similar to point loading, the experiments were carried out with UDL. Here Plate-I was loaded as shown in the fig. 5. Loading was done through placement of sand bag each weigh 360 gm uniformly over the plate. Loads were increased by adding extra layers of sand bag over the first one.
Deformations were noted accordingly. Similar experiments repeated for the Plate-II, Plate-III and Plate-IV successively and the results were noted.

Fig.5: Experimental setup with UDL

Analysis using ANSYS

Analysis was done using ANSYS 5.4 for all the plates to find the deflection of a simply supported plate with a Central Point Load and UDL. The deflection was found after dividing the model of the plate in 24 elements with four node element shell63 for the model and applied appropriate boundary conditions. The deformations were taken at ten selected nodes which also exactly same nodes points taken during the experiment. The results were presented in the Tables 2-5 respectively. The error also calculated with both the results and these are given in the same table as stated above. Figs. 6-9 depicts the comparison of results obtain during experiment and ANSYS. The graphical deformations achieved in ANSYS were is shown in Figs. 10-13.

Table 2: Deformations of the Plate-I under point loading & UDL

<table>
<thead>
<tr>
<th>Conditions</th>
<th>L x L</th>
<th>Point Load</th>
<th>UDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>2 2</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>3 3</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>4 4</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>5 5</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>6 6</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 3: Deformations of the Plate-II under point loading & UDL

<table>
<thead>
<tr>
<th>Conditions</th>
<th>L x L</th>
<th>Point Load</th>
<th>UDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>2 2</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>3 3</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>4 4</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>5 5</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>6 6</td>
<td>1.54</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Fig.6: Comparison of results between ANSYS and Experimental for Plate-I

Fig.7: Comparison of results between ANSYS and Experimental for Plate-II
Table 4: Deformations of the Plate-III under point loading & UDL

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>x</th>
<th>y</th>
<th>ANSYS Exp.</th>
<th>Error %</th>
<th>ANSYS Exp.</th>
<th>Error %</th>
<th>ANSYS Exp.</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.83,300</td>
<td>0.008</td>
<td>0.009</td>
<td>7.778</td>
<td>0.017</td>
<td>0.018</td>
<td>7.222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.5,100</td>
<td>0.052</td>
<td>0.053</td>
<td>5.465</td>
<td>0.104</td>
<td>0.120</td>
<td>13.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.5,450</td>
<td>0.051</td>
<td>0.055</td>
<td>7.273</td>
<td>0.102</td>
<td>0.110</td>
<td>11.585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275,16,150</td>
<td>0.086</td>
<td>0.090</td>
<td>4.444</td>
<td>0.171</td>
<td>0.180</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275,0,300</td>
<td>0.099</td>
<td>0.100</td>
<td>4.000</td>
<td>0.191</td>
<td>0.210</td>
<td>9.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275,0,550</td>
<td>0.098</td>
<td>0.100</td>
<td>4.000</td>
<td>0.191</td>
<td>0.210</td>
<td>9.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>412.5,500</td>
<td>0.052</td>
<td>0.060</td>
<td>3.333</td>
<td>0.104</td>
<td>0.120</td>
<td>13.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>504.16,100</td>
<td>0.087</td>
<td>0.090</td>
<td>3.333</td>
<td>0.173</td>
<td>0.180</td>
<td>8.889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>504.16,300</td>
<td>0.008</td>
<td>0.009</td>
<td>7.778</td>
<td>0.016</td>
<td>0.019</td>
<td>15.789</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Deformations of the Plate-IV under point loading & UDL

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>at 10 kg</th>
<th>at 15 kg</th>
<th>at 20 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>ANSYS Exp.</td>
<td>Error %</td>
</tr>
<tr>
<td>45.83</td>
<td>300</td>
<td>2.89E-02</td>
<td>0.009</td>
</tr>
<tr>
<td>137.5</td>
<td>100</td>
<td>1.9E-02</td>
<td>0.002</td>
</tr>
<tr>
<td>275</td>
<td>16,150</td>
<td>9.3E-02</td>
<td>0.016</td>
</tr>
<tr>
<td>275</td>
<td>0</td>
<td>2.0E-02</td>
<td>0.020</td>
</tr>
<tr>
<td>229.16</td>
<td>150</td>
<td>2.8E-02</td>
<td>0.005</td>
</tr>
<tr>
<td>275</td>
<td>0,300</td>
<td>2.0E-02</td>
<td>0.015</td>
</tr>
<tr>
<td>412.5</td>
<td>100</td>
<td>3.7E-02</td>
<td>0.015</td>
</tr>
<tr>
<td>504.16</td>
<td>300</td>
<td>2.89E-02</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Results and Discussion

From the above results it has been observed that deformations patterns were quite similar for experimental and ANSYS. But experimental values are little bit higher. The error ranges minimum 0.2% to maximum 16%. Though most error is within 10% except very few values gives more error where as normal range for this type of experiment is within 10% error. This is quite acceptable as dial gauges reading may differ in some cases i.e. why few readings not within the limit. However further fine tuning of experimental setup may give better results. During the experiment with central point loading, the maximum deformation was found out as 0.6 mm in case of Plate-I with 10 kg load and minimum as 0.006 mm in case of Plate-IV with 4 kg load. In same loading condition, analysis in ANSYS gives maximum deformation as 1.53 mm in Plate-I with 70 packet sand bag and minimum as 0.004 mm for Plate-IV with 35 packet sand bags. In all cases the Young’s Modulus was taken 2.1×10^4 N/mm2 and the Poisson’s ratio taken as 0.3.

Conclusions

The experimental investigations presented in this work are concerned with the bending problem of plates having different thickness and under simply supported at two opposite ends. The deflections were measured at selected nodes randomly. The results obtained using ANSYS and the experimental results were compared and the error is presented graphically. The deflection and stress resultants of the plates are determined using ANSYS and presented graphically. From the obtained results, it found that the magnitude of deflection for all the cases of plates is varied with application of load.

References