Power efficient system on chip communications

M.Jasmin, T.V.U.Kiran Kumar and S.Beulah Hemalatha
Department of ECE, Bharath University.

ABSTRACT
Power consumption of system level on chip communications is becoming more significant in the overall system on chip power as technology scales down. High bandwidth is desired to enhance parallelism for better performance, and the power efficiency on this bandwidth is critical to the overall SoC power consumption. Current bus architectures such as AMBA, Core connect, and Avalon are convenient for designers but not efficient on power. This paper proposes a physical synthesis scheme for on chip buses and bus matrices to minimize the power consumption, without changing the interface or arbitration protocols. By using a bus gating technique, data transactions can take shortest paths on chip, reducing the power consumption of bus wires to minimal. Routing resource and bandwidth capacity are also optimized by the construction of a shortest-path Steiner graph, wire sharing among multiple data transactions, and wire reduction heuristics on the Steiner graph. In this paper, we optimize on-chip bus communications on the tradeoffs between minimal power, maximal bandwidth, and minimal total wire length. Based on AMBA protocols, we modify the bus structure using a “bus gating” technique, and apply optimizations which are biased toward minimal power, but also favor bandwidth and routing resource.

Introduction
Bus vs NoC Bus and network-on-chip (NoC) are the two types of popular on-chip communication architectures. Bus has been widely used for its speed and simplicity, but lacks the communication bandwidth to support parallelism. Bus matrix extends its bandwidth, but not in an efficient way on power or wires compared to NoC, which is therefore regarded as a better choice for many applications because of its bandwidth capacity, regularity and scalability. However, NoC has relatively large delay, which is a critical disadvantage to system performance, because communications in NoC must take a series of hops on routers in the network. Even with sophisticated routers taking only one clock cycle each hop, the total delay over a long path is still significant. The accumulation of delay on hops is inevitable due to the independency of routers, and it scales up with the number of routers and system complexity. Therefore, we believe bus based communication provides better performance in delay-sensitive systems, because bus delay can be minimized through centralized control and arbitration. On the other hand, the weaknesses such as low bandwidth and wire efficiency, are not intrinsic in bus. In this paper, we address these issues on bus matrix to make it capable and efficient on-chip communication architecture. Electronic system design is being revolutionized by widespread adoption of the System-on-Chip (SoC) paradigm. The benefits of using such an approach are numerous, including improvements in system performance, cost, size, power dissipation, and design turn-around-time. In order to exploit these potential advantages to the fullest, a complete design methodology must adequately address two dimensions of system design. Firstly, it is essential to efficiently and optimally map an application’s computation requirements to a set of high-performance system components, like CPUs, DSPs, application specific cores, memories etc. Secondly, it is equally important to empower a designer with techniques and tools to map the system’s communication requirements onto a well optimized communication architecture that is well suited to the specific application at hand. The focus of this paper lies on the second of these two aspects of system design. Increasing levels of integration are leading to a growing volume and diversity of data and control traffic exchanged among SoC components. As a result, a poorly designed on-chip communication architecture could become a severe impediment to optimal system performance and power consumption. In order to support high-performance components, the on-chip communication architecture must efficiently transport the large volume of heterogeneous communication traffic they generate. Hence techniques to efficiently and optimally map the system’s communication requirements to a target communication architecture need to be included as an integral part of any system design flow.

Problem Formulations:
We require the bus synthesis algorithm to generate a bus matrix based on a given communication constraint graph and a placement of master and slave devices. In this way, on-chip bus matrices can be flexibly reconfigured for different system designs and communication patterns. The optimization is on power and wires under the bandwidth requirement given by the graph. Here with AMBA protocols, we can use Definition 1 to model the communication graph of bus matrices.

Definition 1: A communication graph GC = (Vs, Vt, A) is a directed bipartite graph, where Vs is the set of source vertices, Vt is the set of terminal vertices, and A is the set of arcs from Vs to Vt.

We denote the set of master devices by Vs, the set of slave devices by Vt. An arc (vi,vj) in GC means master device i needs to access slave device j. Also given are the fixed on-chip locations of these devices.
Definition 2: A placement on a communication graph GC is a physical location function $P : V_s \cup V_t \rightarrow \mathbb{R}^2$.

Definition 3: For communication graph $GC = (V_s, V_t, A)$ and placement function $P : V_s \cup V_t \rightarrow \mathbb{R}^2$, a bus matrix graph is a weighted graph $_ = (V, E, \omega)$ with placement $P_: V \rightarrow \mathbb{R}^2$ such that:

a) $V_s \subseteq V, V_t \subseteq V$;

b) $\forall v \in V_s \cup V_t, P(v)$ is a weighted graph (V, E, ω) with placement $P_: V \rightarrow \mathbb{R}^2$

For any $A_ \subseteq A$ such that:

d) $\forall (u, v) \in A_ \subseteq \mathbb{R}^2$;

there is a set of paths $\rho : A_ \rightarrow _ \times V_s \cup V_t$ such that:

i) $\forall (u, v) \in A_ \subseteq \mathbb{R}^2$;

$\rho((u, v)) = P(u)$

ii) $\forall (u, v) \in A_ \subseteq \mathbb{R}^2$;

$\rho((u, v)) = P(u)$

- $\forall (i, j) \in E, i \neq j, \rho(i, j) = P(i) + P(j)$;

- $\forall (i, j) \in E, i \neq j, \rho(i, j) = P(i) + P(j)$;

- $\forall (i, j) \in E, i \neq j, \rho(i, j) = P(i) + P(j)$

The objective is to find the bus matrix graph with minimal total wire length $L(_)) = \omega((u, v)) \times \rho((u, v)) = P(u) + P(v)$.

The Ideal Bus Matrix Graph

The above fig shows an example of a bus matrix graph connecting four masters s_0, s_1, s_2, s_3 and three slaves t_1, t_2, t_3. Five communication arcs are present: s_1 may access t_2 and t_3, and t_1 may be accessed by s_0, s_2, and s_3. The single weight edges in Fig. 5 (by solid segments) are adequate for this requirement. Notice that (s_0, t_1) is the only arc having more than one shortest paths. And when its connection is on, s_2 and s_3 cannot access t_1 at the same time, i.e., bus lines “$s_2 \leftrightarrow t_1$” and “$s_3 \leftrightarrow t_1$” are both open. Depending on s_1’s connection, since s_1 can take at most one of “$s_1 \leftrightarrow s_2$” and “$s_1 \leftrightarrow s_3$,” the connection from s_0 can always choose the one other than s_1’s and find an open path to t_1.

This formulation defines an ideal high bandwidth low power on-chip communication solution, but with limited practicality. Because first, minimization on the wire length of $_ \times V_s \cup V_t$ is computationally expensive due to the exponentially increasing combinations of arc subset $A_$. And even if we pre-compute the optimal solution, it is still impractical to store the path sets for all the subsets, or to compute the path set in real time. Another problem is that, if the communication pattern changes dynamically, when some connections are on but need to change paths, it may induce extra delay or timing issues.

Heuristics for generating shortest-path steiner graphs

In our problem of minimal shortest-path Steiner graph, the locations of a set of sources s_1, s_2, \ldots, s_m and terminals t_1, t_2, \ldots, t_n are given, and the objective is to find a rectilinear routing solution containing all the source-to-terminal shortest paths, with total wire length as small as possible. In single source cases, this is a rectilinear Steiner arborescence (shortest-path tree) problem which has been studied. Finding the exact solution of a minimum rectilinear Steiner tree (MRST) is NP-complete [7], and finding a minimum rectilinear Steiner arborescence (MRS) is believed to be hard [15] although without hardness proof. For practical use, several efficient heuristic algorithms are introduced and compared in [5], among which the 2-IDeA/G algorithm has the best average performance over runtime. In general cases containing multiple sources, the problem has not been studied before. We adopt the the 2-IDeA/G heuristic as basis and add more heuristics to construct the shortest-path Steiner graph. k-IDeA/G heuristic for MRSA The k-IDeA/G (iterated k-deletion for arborescence) algorithm is based on the RSA heuristic (denoted RSA/G). The basic flow of RSA/G is to start with n terminals as n subtrees and iteratively merge a pair of subtree roots v and $v_\$ such that the merging point is as far from the source as possible, so that the wires can be shared as much as possible. It terminates when only one subtree remains. For efficient implementation, the RSA/G first sorts all the nodes on the Hanan grid in decreasing distance to the source s, and visits each node maintaining a peer set P of subtree roots. We denote the rectilinear distance from s to v as $\Delta s(v)$ or $\Delta(s, v)$. Two basic operations are used in RSA/G at: terminal merger opportunity (TMO), when a terminal is added into P as a
subtree; and Steiner merger opportunity (SMO), when |X| ≥ 2
and the subtrees in X are merged.

THE RSA/G ALGORITHM:

Given a source s and n terminals t1, · · · , tn,
v1, · · · , vN are the Hanan grid nodes sorted by
Δs(v1) > · · · > Δ(vN);
P ← φ;
for i = 1 to N do
if there is tj at vi, then (TMO)
P ← P (vi);
X ← P (vj | Δs(vj) = Δ(vi)+Δ(vj, vi));
if (∆i ≥ 2) then (SMO)
merge the nodes in X rooted at vi
P ← (P_X)_(vi);
return the arborescence rooted at s;remove up to k nodes from
v1, · · · , vN when running the RSA/G algorithm. By removing
some nodes, the SMO merges are skipped at those points, which in some cases can
result in better overall solution. In each iteration of the k-IDeA
algorithm, all the combinations of skipping k or less nodes are
tried in the RSA/G and the best set of skipped nodes are marked
as permanently deleted. The iterations are then repeated until no
further improvement is obtained.

Multiple MRSA construction with shared wires

With multiple sources s1, · · · , sm, our algorithm needs to
construct a Steiner graph G which contains all the MRSSAs
forming every source. While each MRSA is minimized by
k-IDeA, the m arborescence should share as much wire as
possible to minimize total wire length on G. We devise
additional heuristics based on k-IDeA to construct multiple
MRSSAs one by one, explained as follows. First, on each MRSA
(rooted at si on ith iteration) construction, the terminals
requiring connections can move towards the source si along
existing edges of G, so that the wires can be reused and shared.
we only need to connect 8 nodes instead of the original 16
terminals to form the MRSA rooted at s2, because all the other
terminals can be reached from one of these nodes with shortest
path from s2. This set of nodes (denoted T_) can be obtained by
checking each terminal tj , which necessitates a shortest-path
connection from si. Starting from ti, we move towards si as
much as possible along existing wire paths until reaching a vertex v (a terminal or a Steiner node) in G where no vertex
closer to si can be reached, then add it to T_. When there are
multiple paths in the graph, we pick the final vertex closest to si
so the rest part of the path is short and likely to need less wire.

Nodes requiring connections

Second, we construct the MRSA on the set of nodes T_
using existing wires. The TMO condition is then changed to vi
∈ T_. The SMO condition is changed, also for the purpose of
wire reusing, from |X| ≥ 2 to |X| ≥ 2 or (|X| = 1 and vi ∈ G).
Because when vi is already in the graph, it can share wires with the
node in X like the case when |X| ≥ 2 in RSA/G. As figure 6
shows, when X contains only one node {t2}, it should be
connected into G when vi comes to t3, and half of the
connection length can be saved using the existing horizontal
wire. The detailed algorithm is described in table 2, where
routine `connect (u, v)’ uses existing wires if applicable on
shortest connections.

Connecting a node into the Steiner graph

Revised Rsa/G’ Algorithm

Given existing Steiner graph G, source sk, terminals
t1, · · · , tm, and v1, · · · , vN are same as in RSA/G;

Routine Necessitate(vertex v);
U ← {u ∈ G and exists a wire path from
v to u of length ∆sk (v) = ∆sk (u)};
T_ ← T_ ∪ {um ∈ U with minimum ∆sk (u)};
T_ ← φ;
for i = 1 to n do Necessitate(ti);
P ← φ;
for i = 1 to N do
if vi ∈ T_ then P ← P (vi);
if (∆i ≥ 2) then (SMO)
merge the nodes in X rooted at vi
P ← (P_X)_(vi);
return: (the MRSA rooted at sk is added to G)

The k-IDeA iterations remain unchanged. After the shortest path
Steiner graph is constructed by applying k-IDeA on the m
sources, there are possibly some redundant edges that can be
removed. So the final step is to check each edge (vi, vj) G, if G
still contains all the master-to-slave shortest paths without (vi, vj),
remove edge (vi, vj). Practical Bus Matrix Synthesis
Formulation Given a communication graph GC and its
placement, we define another bus matrix graph with fixed paths for
the arcs in GC, i.e., each pair of master-slave connection
always takes the same path regardless of other connections.

Bus Matrix Control Design

Apart from path lengths and data wire lengths, the control
overhead needs to be considered for a complete optimization.
Although the data lines consume the major amount of routing
resource because they are usually at least 64 bit (32 bit × 2-way)
wide, control overhead is increased compared to traditional bus
architectures by adopting Steiner graphs. We need a lot of
switches at Steiner nodes to guide the on-chip traffic, and each
switch needs a certain number of control signals depending on
its node degree and edge weights.

The sketch of bus matrix control scheme

Each slave device has an arbiter which handles the requests
from masters and decides the connection. The result is sent to the
central switch control unit, where all the connection paths are
stored. Depending on the set of active paths the central switch
control sends control signals to all the switches on each path, which together instantly create the master-to-slave connection requested by the master device.

Control on switches in a bus matrix

![Diagram of control on switches in a bus matrix]

Conclusion:

The weaknesses of original bus matrices, such as low power efficiency and low wire efficiency, are resolved by using a Steiner graph structure. Compared to network-on-chip which has better bandwidth flexibility, bus matrix has much less latency because of its centralized control, consumes less power because of the shortest (or close to shortest) paths with minimal control/packet overhead. Efficiency on bus lines is maximized without the need to redesign system components and IP modules. Routing resource is also reduced without compromising low power.

Therefore, we believe bus matrix architectures will be widely applied for efficient communications in various future systems.

References