A differential equation model of Iodine cycle in the human body

Li Yong
College of Science, Guilin University of Technology, Guilin, P. R. China.

ABSTRACT
The paper mainly calculates and analyzes the model of Iodine cycle in the human body. The model can be divided into two cases: when the parameter is not certain, it could analyze the deviation of content of iodine in the body and normal; when the parameter is certain, it makes the general form of solution and the method is general and practical.

© 2011 Elixir All rights reserved.

Introduction
Iodine is a component constitutes the core of thyroid hormone, TSH stimulates carbohydrate, protein, fat and salt metabolism and promote protein synthesis and body growth and development, on the central nervous system, circulatory system, hematopoietic system, and muscle activity and so has a significant role. In addition, iodine also can regulate the body's metabolism of calcium and phosphorus and other elements. Therefore, the iodine on human health has a very important role. If people are long iodine deficiency in the diet, it will suffer from iodine deficiency disorders (IDD), which is thyroid disease, or "to a disease". However, excessive intake of iodine in the body long term, the iodine would inhibit the peroxidation of disease, or "to a disease". However, excessive intake of iodine (For example, blindly taking iodized calcium and iodized oil pills), Iodine poisoning will be happened.

Model proposed
Iodine in the human body has three existing forms. The first comes from the food potassium iodide (KI) and sodium iodide (NaI) and other inorganic iodine. The intake of inorganic iodine in the human body through the role of the body turn into organic iodine. Organic iodine transformed into hormone iodine. Assuming every day the volume of iodine exposure is I_0, inorganic iodine is, organic iodine is $I_2(t)$, hormone iodine is $I_3(t)$, literature[1] offered iodine in cycle of the human body differential equation model.

\[
\begin{align*}
\frac{dI_1}{dt} &= -(k_1 + k_2)I_1 + k_3I_3 + I_0 \\
\frac{dI_2}{dt} &= k_2I_1 - k_4I_2 \\
\frac{dI_3}{dt} &= k_4I_2 - (k_3 + k_5)I_3
\end{align*}
\]

Which, $k_1, k_2, k_3, k_4, k_5 \in \mathbb{Z}^+$ is constant, data can be measured by the clinical trials. Then calculated.

\[
A = \begin{bmatrix}
-(k_1 + k_2) & 0 & k_3 \\
 k_2 & -k_4 & 0 \\
 0 & k_4 & -(k_3 + k_5)
\end{bmatrix}
\]

\[
x(t) = (I_1(t), I_2(t), I_3(t))^T, f(t) = (I_0, 0, 0)^T . \text{Then formula (1) can be written as } x(t) = Ax + f(t) \text{ the characteristic matrix of matrix } A \text{ is}
\]

\[
B = \begin{bmatrix}
-(k_1 + k_2) - \lambda & 0 & k_3 \\
k_2 & -k_4 - \lambda & 0 \\
 0 & k_4 & -(k_3 + k_5) - \lambda
\end{bmatrix}
\]

Model Analysis
We can reference to such a model to analyzed mechanism of patient illness. If we do not have a convenient measurement find out specific values of k_1, k_2, k_3, k_4, k_5 we can get help from Mathematical calculate the differential equation has three forms of the complex eigenvalue a complex form eigenvalue $\lambda_1, \lambda_2, \lambda_3$, then we use $\hat{I_1}, \hat{I_2}, \hat{I_3}$ separately express the normal average of inorganic iodine, organic iodine, hormone iodine's content. We need to study the deviation between $\hat{I_1}(t), \hat{I_2}(t), \hat{I_3}(t)$ and their normal values:

\[
\hat{I_1} = I_1(t) - \hat{I_1}, \hat{I_2} = I_2(t) - \hat{I_2}, \hat{I_3} = I_3(t) - \hat{I_3}.
\]

Then

\[
\begin{align*}
\frac{d\hat{I_1}}{dt} &= F_1(\hat{I_1}, \hat{I_2}, \hat{I_3}) + I_0 \\
\frac{d\hat{I_2}}{dt} &= F_2(\hat{I_1}, \hat{I_2}, \hat{I_3}) \\
\frac{d\hat{I_3}}{dt} &= F_3(\hat{I_1}, \hat{I_2}, \hat{I_3})
\end{align*}
\]
Suppose F_1, F_2, F_3 are continuously differentiable ternary function. we can learn from the Brook Taylor expansion of multivariate function, $F_i(\hat{1}, \hat{1}, \hat{1}, I_2, I_3, I_4)$

$$F_i(\hat{1}, \hat{1}, I_2, I_3) = F_i(\hat{1}, \hat{1}, I_2, I_3) + \frac{\partial F_i(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_j(t)} I_j(t) + \frac{\partial F_i(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_k(t)} I_k(t) + I_j(t) + I_k(t)$$

$$F_1(\hat{1}, \hat{1}, I_2, I_3) = F_2(\hat{1}, \hat{1}, I_2, I_3) + \frac{\partial F_2(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_j(t)} I_j(t) + \frac{\partial F_2(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_k(t)} I_k(t) + I_j(t) + I_k(t)$$

$$F_3(\hat{1}, \hat{1}, I_2, I_3) = F_4(\hat{1}, \hat{1}, I_2, I_3) + \frac{\partial F_4(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_j(t)} I_j(t) + \frac{\partial F_4(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_k(t)} I_k(t) + I_j(t) + I_k(t)$$

Which o_1, o_2, o_3 are higher order small amount about $\hat{1}, \hat{1}, I_3$, when derivations between $I_1(t), I_2(t), I_3(t)$ and Normal of $\hat{1}, I_2, I_3$ are not big, o_1, o_2, o_3 can be ignored. And because $\hat{1}, I_2, I_3$ are normal, should satisfy $F_i(\hat{1}, \hat{1}, I_2, I_3) = F_i(\hat{1}, \hat{1}, I_2, I_3) = F_i(\hat{1}, \hat{1}, I_2, I_3) = 0$, so

$$\frac{d \hat{1}}{dt} = \frac{\partial F_i(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_j(t)} I_j(t) + \frac{\partial F_i(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_k(t)} I_k(t) + I_j(t) + I_k(t)$$

$$\frac{d \hat{2}}{dt} = \frac{\partial F_i(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_j(t)} I_j(t) + \frac{\partial F_i(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_k(t)} I_k(t) + I_j(t) + I_k(t)$$

$$\frac{d \hat{3}}{dt} = \frac{\partial F_i(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_j(t)} I_j(t) + \frac{\partial F_i(\hat{1}, \hat{1}, I_2, I_3)}{\partial I_k(t)} I_k(t) + I_j(t) + I_k(t)$$

Even if the specific values of k_1, k_2, k_3, k_4, k_5 can be known, so the value of partial derivative of F_i, F_2, F_3 in the point of $(\hat{1}, \hat{1}, I_2, I_3)$ cannot be determined, But we can analyze the symbol, to simulate the diagnosis of the patient's basic information, analyze the three levels of iodine in the human body is inadequate or excessive.

If we know the value of k_1, k_2, k_3, k_4, k_5, and matrix of initial conditions $C = [I_1(0), I_2(0), I_3(0)]^T$. Then we solve the answer for model (1) [2]. From (2) we can know the three eigenvalues about (1) $\lambda_1, \lambda_2, \lambda_3$ (Because the expression is too complex form, so I do not give). If $\lambda_1, \lambda_2, \lambda_3$ are three different simple eigenvalue.

Order $r(l) = b_2 l^2 + b_1 l + b_0$

Then

$$r(\lambda_1) = b_2 \lambda_1^2 + b_1 \lambda_1 + b_0 = e^{\lambda_1 t}$$

$$r(\lambda_2) = b_2 \lambda_2^2 + b_1 \lambda_2 + b_0 = e^{\lambda_2 t}$$

$$r(\lambda_3) = b_2 \lambda_3^2 + b_1 \lambda_3 + b_0 = e^{\lambda_3 t}$$

Solved

$$b_0 = e^{\lambda_2 t} \lambda_1 (\lambda_1 - \lambda_2) + e^{\lambda_3 t} \lambda_1 (\lambda_1 - \lambda_3) + e^{\lambda_1 t} \lambda_2 (\lambda_1 - \lambda_3)$$

$$b_0 = e^{\lambda_1 t} (\lambda_1 - \lambda_2) - e^{\lambda_1 t} (\lambda_1 - \lambda_3) + e^{\lambda_1 t} (\lambda_1 - \lambda_2)$$

$$b_0 = e^{\lambda_1 t} (\lambda_1 - \lambda_2) + e^{\lambda_1 t} (\lambda_1 - \lambda_2) + e^{\lambda_1 t} (\lambda_1 - \lambda_2) - e^{\lambda_1 t} (\lambda_1 - \lambda_2)$$

$$b_0 = e^{\lambda_1 t} (\lambda_1 - \lambda_2) + e^{\lambda_1 t} (\lambda_1 - \lambda_2) + e^{\lambda_1 t} (\lambda_1 - \lambda_2)$$

so, $e^{\lambda_1 t} = b_2 A^2 + b_1 A + b_0 I$, then can be drawn $e^{\lambda_1 t} C$.

But $\int_0^t e^{\lambda_1 t} f(t) d\tau = \left[\begin{array}{c} I_0 e^{-\tau} \\ 0 \\ 0 \end{array} \right] = \left[\begin{array}{c} I_0 - I_0 e^{-\tau} \\ 0 \\ 0 \end{array} \right]$, So solutions of model (1) $x(t) = e^{\lambda_1 t} C + e^{\lambda_1 t} \int_0^t e^{-\lambda_1 \tau} f(t) d\tau$ can be obtained.

Select time I_1, I_2, \cdots, I_n. Have observations x_1, x_2, \cdots, x_n, requires a variance

$$\sum_{j=1}^{n} [x_j - \tau(x)]^2 = \min.$$ from minimum variance method we can solve I_0. Thus reasonable to diagnose the patient's condition.

In the absence of clinical data, this paper only gives a general solution, but the conclusion has scientific value, the method is also general.

Conclusion

In this paper, the cycle of iodine in the body differential equation model to do a detailed analysis, presented a number of methods to solve the problem from mathematical. In this paper, the body has the general solution of iodine cycle, for the other model, you can use the same method. In short, differential equation and its solution in medicine, biology, economics and other fields has great prospect [3-5].

References

