On \(\pi gb\)-Separation Axioms in Bitopological Spaces

D.Sreeja\(^1,2\) and C.Janaki\(^2\)

\(^1\)Department of Mathematics, CMS College of Science and Commerce, Coimbatore-6, India.
\(^2\)Department of Mathematics, L.R.G Govt. Arts College for Women, Tirupur-4, India.

ABSTRACT

In this paper, we introduce and study some new separation axioms using the \((1, 2)^\pi gb\)-open sets in bitopological spaces.
Definition 2.9: A bitopological space X is $(1,2)^*\text{-}T_0$ if for each pair of distinct points x, y of X, there exists a $(1,2)^*\text{-open}$ set containing one of the points but not the other. Complement of $(1,2)^*\text{-b-open}$ is called $(1,2)^*\text{-b-closed}$. Throughout the following sections by X and Y we mean bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) respectively.

$(1,2)^*\text{-gb-T}_0$-Spaces

Definition 3.1: A bitopological space X is $(1,2)^*\text{-gb-T}_0$ if for each pair of distinct points x, y of X, there exists a $(1,2)^*\text{-gb-open}$ set containing one of the points but not the other.

Lemma 3.2: If for some $x \in X$, $\{x\} \subseteq (1,2)^*\text{-gb-open}$, then $x \notin \{1,2\}^*\text{-gb-cl}([y])$ for all $y \neq x$.

Proof: If $\{x\} \subseteq (1,2)^*\text{-gb-open}$ for some $x \in X$, then $x \notin \{x\}$. If $x \in \{x\}^*\text{-gb-cl}([y])$ for some $y \neq x$, then x,y both are in all the $(1,2)^*\text{-gb-closed}$ sets containing y. This implies $x \notin X$ which is not true. Hence $x \notin \{1,2\}^*\text{-gb-cl}([y])$.

Theorem 33: In a space X, distinct points have distinct $(1,2)^*\text{-gb-closures}$.

Proof: Let $x,y \in X$. $x \neq y$. Take $A = \{x\}^*$. Case(i): If $\tau_1 \tau_2\text{-cl}(A) = A$. Then $A \subseteq \tau_2\text{-closed}$. This implies $A \subseteq \{1,2\}^*\text{-gb-closed}$. Then $X-A = \{x\} \subseteq \{1,2\}^*\text{-gb-closed}$, not containing y. Then by previous lemma 3.2, $x \notin \{1,2\}^*\text{-gb-cl}([y])$ and $y \in \{1,2\}^*\text{-gb-cl}([y])$. Thus $(1,2)^*\text{-gb-cl}([x])$ and $(1,2)^*\text{-gb-cl}([y])$ are distinct.

Case(ii): If $\tau_1 \tau_2\text{-cl}(A) = X$. Then $A \subseteq \{1,2\}^*\text{-gb-open}$ and $\{x\} \subseteq \{1,2\}^*\text{-gb-closed}$. This implies $(1,2)^*\text{-gb-cl}([x]) = \{x\}$ which is not equal to $(1,2)^*\text{-gb-cl}([y])$.

Theorem 3.4: A bitopological space X is $(1,2)^*\text{-gb-cl}(-T_0)$ iff for each pair of distinct points x, y of X, $(1,2)^*\text{-gb-cl}(x) \neq (1,2)^*\text{-gb-cl}(y)$.

Proof: Necessity: Let $x \neq y$. Then there exists a $(1,2)^*\text{-gb-open}$ set V containing one of the points but not the other, say $x \in V$ and $y \notin V$. Then V^c is $(1,2)^*\text{-gb-closed}$ set containing y but not x. But $(1,2)^*\text{-gb-cl}(y)$ is the smallest $(1,2)^*\text{-gb-closed}$ set containing y. Therefore $(1,2)^*\text{-gb-cl}(y) \subseteq V^c$ and hence $x \in (1,2)^*\text{-gb-cl}(y)$. Thus $(1,2)^*\text{-gb-cl}(x) \neq (1,2)^*\text{-gb-cl}(y)$.

Sufficiency: Suppose $x \neq y$. Then there exists a $(1,2)^*\text{-gb-open}$ set V containing one of the points but not the other, say $x \in V$ and $y \notin V$. Then V^c is $(1,2)^*\text{-gb-closed}$ set containing y but not x. But $(1,2)^*\text{-gb-cl}(y)$ is the smallest $(1,2)^*\text{-gb-closed}$ set containing y. Therefore $(1,2)^*\text{-gb-cl}(y) \subseteq V^c$ and hence $x \in (1,2)^*\text{-gb-cl}(y)$. This is a contradiction. Hence $x \notin (1,2)^*\text{-gb-cl}(y)$.

Theorem 3.5: Every bitopological space is $(1,2)^*\text{-gb-T}_0$.

Proof: Follows from previous theorems 3.3 and 3.4.

Theorem 3.6: Let $f:X \to Y$ be a bijection, $(1,2)^*\text{-gb-open}$ map and X is $(1,2)^*\text{-gb-T}_0$ space, then Y is also $(1,2)^*\text{-gb-T}_0$ space.

Proof: Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Since f is a bijection, there exists $x_1,x_2 \in X$ with $x_1 \neq x_2$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is $(1,2)^*\text{-gb-T}_0$ space, there exists a $(1,2)^*\text{-gb-open}$ set M in X such that $x_1 \in M$ and $x_2 \notin M$. Since f is $(1,2)^*\text{-gb-open}$, $f(M)$ is a $(1,2)^*\text{-gb-open}$ set in Y. Hence for any two distinct points y_1, y_2 in Y, there exists $(1,2)^*\text{-gb-open}$ set $f(M)$ in Y such that $y_1 \notin f(M)$ and $y_2 \notin f(M)$. Hence Y is $(1,2)^*\text{-gb-T}_0$ space.
Conversely, Suppose that \(\{ x \} \subset \cup (1,2)^{*}-gbO(X) \) but \((1,2)^{*}-gb-\text{cl}(\{ y \})\). This implies \((1,2)^{*}-\text{gb-cl}(\{ y \})\). Hence the set \(\{ y \} \) is a subset of \((1,2)^{*}-\text{gb-cl}(\{ x \})\). This \((1,2)^{*}-\text{gb-cl}(\{ y \})\) is a subset of \((1,2)^{*}-\text{gb-cl}(\{ x \})\). Now \((1,2)^{*}-\text{gb-cl}(\{ x \})\) contains \(x \) and \((1,2)^{*}-\text{gb-cl}(\{ y \})\) which is a contradiction.

Remark 3.17: Every \((1,2)^{*}-gb-T_{4}\) space is \((1,2)^{*}-gb-T_{0}\) space.

Theorem 3.14: In a space \(X \), the following are equivalent
\(\pi \) \(X \) is \((1,2)^{*}-gb-T_{1}\)
1. For every \(x \in X \), \(\{ x \} \) is \((1,2)^{*}-gb-T_{1}\).
2. Each subset \(A \) of \(X \) is the intersection of all \((1,2)^{*}-gb-T_{1}\) subsets containing \(A \).
3. The intersection of all \((1,2)^{*}-gb-T_{1}\) subsets containing the point \(x \) in \(X \) is \(\{ x \} \).

Proof: (1) \(\Rightarrow \) (2) Suppose \(X \) is \((1,2)^{*}-gb-T_{1}\). Let \(x \in X \) and \(y \in \{ x \} \). Then \(x \neq y \) and there exists a \((1,2)^{*}-gb-T_{1}\) subset \(U \) such that \(y \notin U \). Therefore \(y \notin U \subset \{ x \} \). That is, \(x \) is \((1,2)^{*}-gb-cl\) closed.

(2) \(\Rightarrow \) (3) Let \(A \subset X \) and \(y \notin A \). Then \(\{ y \} \) is \((1,2)^{*}-gb\)-open in \(X \) and \(\{ y \} \) is \((1,2)^{*}-gb\)-closed in \(\{ x \} \). Hence \(\{ x \} \) is \((1,2)^{*}-gb\)-closed.

(3) \(\Rightarrow \) (4) is obvious.

Theorem 3.15: \(X \) is \((1,2)^{*}-gb\)-symmetric iff \(\{ x \} \) is \((1,2)^{*}-gb\)-closed for \(x \in X \).

Proof: Assume that \(\{ x \} \subset \cup (1,2)^{*}-gb-cl(\{ y \}) \) but \(y \notin \cup (1,2)^{*}-gb-cl(\{ x \}) \). This implies \((1,2)^{*}-\text{gb-cl}(\{ x \})\) \(y \). Hence the set \(\{ y \} \) is a subset of \((1,2)^{*}-\text{gb-cl}(\{ x \})\). This \((1,2)^{*}-\text{gb-cl}(\{ y \})\) is a subset of \((1,2)^{*}-\text{gb-cl}(\{ x \})\). Now \((1,2)^{*}-\text{gb-cl}(\{ x \})\) contains \(x \) which is a contradiction.

Conversely, suppose \(\{ x \} \subset \cup (1,2)^{*}-gbO(X) \) but \((1,2)^{*}-\text{gb-cl}(\{ x \})\) \(y \). Hence \(\{ y \} \) is \((1,2)^{*}-\text{gb-cl}(\{ x \})\). This \((1,2)^{*}-\text{gb-cl}(\{ y \})\) is \((1,2)^{*}-\text{gb-cl}(\{ x \})\) contains \(x \) but not \(y \). Hence \(X \) is \((1,2)^{*}-gb-T_{1}\) space.

Remark 3.17: If \(X \) is \((1,2)^{*}-gb-T_{4}\), then \(X \) is \((1,2)^{*}-gb-T_{1}\), \(\pi \).

Corollary 3.19: If \(X \) is \((1,2)^{*}-gb-T_{4}\), then \(X \) is \((1,2)^{*}-gb-T_{0}\).

Proof: By corollary 3.18 and remark 3.17, it suffices to prove \(\Rightarrow \) (2). Let \(x \neq y \) and by \((1,2)^{*}-gb-T_{0}\), there exists \(x \in G_{1} \subset \{ y \} \). Then \(y \notin \{ y \} \). Hence \(y \notin \{ y \} \). There exists \(G_{2} \subset \{ y \} \). This \((1,2)^{*}-\text{gbO}(X)\) such that \(G_{2} \subset \{ y \} \). Hence \(X \) is \((1,2)^{*}-gb-T_{4}\) space.

Definition 3.20: A space \(X \) is \((1,2)^{*}-gb-T_{4}\) if for each pair of distinct points \(x \) and \(y \) in \(X \), there exists a \((1,2)^{*}-gb\)-open set \(U \) and a \((1,2)^{*}-gb\)-open set \(V \) such that \(x \in U \) and \(y \notin V \).

Remark 3.21: If \(X \) is \((1,2)^{*}-gb-T_{4}\) space, then \(\pi \) is \((1,2)^{*}-gb-T_{4}\).

Definition 3.22: Let \(X \) be a bitopological space. Let \(x \) be a point of \(X \) and \(G \) be a subset of \(X \). Then \(G \) is called an \((1,2)^{*}-gb\)-neighbourhood of \(x \) (briefly \((1,2)^{*}-gb\)-nebd of \(x \)) if there exists an \((1,2)^{*}-gb\)-open set \(U \) of \(X \) such that \(x \in U \).

Theorem 3.23: For a bitopological space \(X \), the following are equivalent:
1. \(X \) is \((1,2)^{*}-gb-T_{2}\).
2. If \(x \in X \), then for each \(y \neq x \), there exists \((1,2)^{*}-gb\)-nebd of \(x \) such that \(y \notin \{ x \} \).
3. If \(x \in X \), then for each \(y \neq x \), there is \((1,2)^{*}-gb\)-open set \(U \) containing \(x \) such that \(y \notin \{ x \} \).

Proof: (1) \(\Rightarrow \) (2): Let \(x \in X \). If \(x \notin X \), then there exists \((1,2)^{*}-gb\)-nebd \(N(x) \) such that \(y \notin \{ x \} \).

(2) \(\Rightarrow \) (3): Obvious.

(3) \(\Rightarrow \) (1): Let \(x \in X \) and \(y \neq x \). By (2), \(y \notin \{ x \} \).

Theorem 3.24: \(X \) is \((1,2)^{*}-gb\)-irresolute open map and \(Y \) is \((1,2)^{*}-gb-T_{2}\) then \(X \) is \((1,2)^{*}-gb-T_{2}\).

Definition 4.1: A subset \(A \) of a bitopological space \(X \) is called \((1,2)^{*}-D\) set if there are \(U \) and \(V \) such that \(A = U \cap V \).

Definition 4.2: A space \(X \) is said to be
1. \((1,2)^{*}-D_{0}\) if for any pair of distinct points \(x \) and \(y \) of \(X \), there exist a \((1,2)^{*}-D\)-set in \(X \) containing \(x \) but not \(y \) and a \((1,2)^{*}-D\)-set in \(X \) containing \(y \) but not \(x \).
(ii) π-D if for any pair of distinct points x and y in X, there exists a $(1,2)^*\pi$-D-set of X containing x but not y and a $(1,2)^*\pi$-D-set in X containing y but not x.

(iii) $(1,2)^*\pi$-D if for any pair of distinct points x and y of X, there exists disjoint $(1,2)^*\pi$-D-sets G and H in X containing x and y respectively.

Definition 4.3: A bitopological space X is said to be $(1,2)^*\pi$-D-connected if X cannot be expressed as the union of two disjoint non-empty $(1,2)^*\pi$-D-sets.

Definition 4.4: A bitopological space X is said to be $(1,2)^*\pi$-D-compact if every cover of X by $(1,2)^*\pi$-D-sets has a finite subcover.

Definition 4.5: A subset A of a bitopological space is called $(1,2)^*\pi$-D-set if there are two open sets $U, V \in (1,2)^*\pi GBO(X)$ such that $U \subseteq X$ and $A = U - V$.

Clearly every $(1,2)^*\pi$-D-open set U different from X is a $(1,2)^*\pi$-D-set if $A = U$ and $V = \emptyset$.

Example 4.6: Let $X = \{a, b, c, d\}$ and $\tau_1 = \{\varnothing, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{c\}$ is a $(1,2)^*\pi$-D-set but not a $(1,2)^*\pi$-open set.

Example 4.7: A space X is said to be $(1,2)^*\pi$-D if there are two $(1,2)^*\pi$-D-sets X containing x but not y or a $(1,2)^*\pi$-D-set in X containing y but not x.

(v) $(1,2)^*\pi$-D if for any pair of distinct points x and y in X there exists a $(1,2)^*\pi$-D-set of X containing x but not y and a $(1,2)^*\pi$-D-set in X containing y but not x.

(vii) $(1,2)^*\pi$-D if for any pair of distinct points x and y in X, there exists disjoint $(1,2)^*\pi$-D-sets G and H in X containing x and y respectively.

Example 4.8: Let $X = \{a, b, c, d\}$ and $\tau_1 = \{\varnothing, \{a\}, \{b, c\}, \{a, b, c\}, X\}$. Then $\varnothing, \{a\}, \{b, c\}$, and $\{a, b, c\}$ are $(1,2)^*\pi$-D-sets in X. For U and V; since $U \subseteq \{b, c\}$ and $V \subseteq \{a, b, c\}$ then we have $S \subseteq \{a, b, c\}$ is a $(1,2)^*\pi$-D-set but not a $(1,2)^*\pi$-open set.

Example 4.9: A space X is said to be $(1,2)^*\pi$-D if for any pair of distinct points x and y in X, there exist a $(1,2)^*\pi$-D-set in X containing x but not y or a $(1,2)^*\pi$-D-set in X containing y but not x.

Example 4.10: Let $X = \{a, b, c, d\}$ and $\tau_1 = \{\varnothing, \{a\}, \{b, c\}, \{a, b, c\}, X\}$. Then $\{c\}$ is a $(1,2)^*\pi$-D-set but not a $(1,2)^*\pi$-open set.

Example 4.11: A subset A of a bitopological space is called $(1,2)^*\pi$-D if there are two open sets $U, V \in (1,2)^*\pi GBO(X)$ such that $U \subseteq X$ and $A = U - V$.

Clearly every $(1,2)^*\pi$-D-open set U different from X is a $(1,2)^*\pi$-D-set if $A = U$ and $V = \emptyset$.

Remark 4.9: A subset A of a bitopological space X is called $(1,2)^*\pi$-D-set if there are two open sets $U, V \in (1,2)^*\pi GBO(X)$ such that $U \subseteq X$ and $A = U - V$.

Clearly every $(1,2)^*\pi$-D-open set U different from X is a $(1,2)^*\pi$-D-set if $A = U$ and $V = \emptyset$.

Example 4.12: Let $X = \{a, b, c, d\}$ and $\tau_1 = \{\varnothing, \{a\}, \{b, c\}, \{a, b, c\}, X\}$. Then $\{c\}$ is a $(1,2)^*\pi$-D-set.

Example 4.13: Let $X = \{a, b, c, d\}$ and $\tau_1 = \{\varnothing, \{a\}, \{b, c\}, \{a, b, c\}, X\}$. Then $\{c\}$ is a $(1,2)^*\pi$-D-set.

Example 4.14: A point $x \in X$ which has X as a $(1,2)^*\pi$-D-neighborhood is called $(1,2)^*\pi$-D-neighborhood.

Example 4.15: Let $X = \{a, b, c\}$ and $\tau_1 = \{\varnothing, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{c\}$ is a $(1,2)^*\pi$-D-set.

Example 4.16: For a $(1,2)^*\pi$-D-compact bitopological space X, the following statements hold.

(i) X is a $(1,2)^*\pi$-D-space.

(ii) X is a $(1,2)^*\pi$-D-space if and only if for any pair of distinct points x and y in X, the inverse image of y is a $(1,2)^*\pi$-D-space in X.

Example 4.17: For a $(1,2)^*\pi$-D-space X, the following statements hold.

(i) X is a $(1,2)^*\pi$-D-space.

(ii) X is a $(1,2)^*\pi$-D-space if and only if for any pair of distinct points x and y in X, the inverse image of y is a $(1,2)^*\pi$-D-space in X.

Example 4.18: For a $(1,2)^*\pi$-D-space X, the following statements hold.

(i) X is a $(1,2)^*\pi$-D-space.

(ii) X is a $(1,2)^*\pi$-D-space if and only if for any pair of distinct points x and y in X, the inverse image of y is a $(1,2)^*\pi$-D-space in X.
Theorem 4.19: If Y is (1,2)*-gb-D, and f: X → Y is (1,2)*-gb-irresolute and bijective, then X is (1,2)*-gb-D.
Proof: Suppose Y is (1,2)*-gb-D and f is bijective, (1,2)*-gb-irresolute. Let x, y be any pair of distinct points of X. Since f is injective and Y is (1,2)*-gb-D, there exists (1,2)*-gb-D sets G_1 and G_2 of Y containing f(x) and f(y) respectively such that f(y) ≠ G_1 and f(x) ≠ G_2. By Theorem 4.9, f^1(G_1) and f^1(G_2) are (1,2)*-gb-D sets in X containing x and y respectively. Hence X is (1,2)*-gb-D.

Theorem 4.20: A topological space X is (1,2)*-gb-D if for each pair of distinct points x, y ∈ X, there exists a (1,2)*-gb-continuous surjective function f: X → Y such that f(x) ≠ f(y).
Proof: Let x and y be any pair of distinct points in X. By hypothesis, there exists a (1,2)*-gb-continuous surjective function f of a space X onto a (1,2)*-D-space Y such that f(x) ≠ f(y). Hence there exists disjoint (1,2)*-D sets S_x and S_y in Y such that f(S_x) ⊈ f(S_y) and f(f(S_x)) and f(f(S_y)) are disjoint (1,2)*-gb-D sets in X containing x and y respectively. Hence X is a (1,2)*-gb-D set.

Theorem 4.21: X is (1,2)*-gb-D iff for each pair of distinct points x, y ∈ X, there exists a (1,2)*-gb-irresolute surjective function f: X → Y, where Y is (1,2)*-gb-D space such that f(x) and f(y) are distinct.
Proof: Necessity: For every pair of distinct points x, y ∈ X, it suffices to take the identity function on X.
Sufficiency: Let x ≠ y ∈ X. By hypothesis, there exists a (1,2)*-gb-irresolute, surjective function from X onto a (1,2)*-gb-D set such that f(x) ≠ f(y). Hence there exists disjoint (1,2)*-gb-D sets G_x and G_y in Y such that f(G_x) ⊈ f(G_y) and f(G_x) and f(G_y) are disjoint (1,2)*-gb-D sets in X containing x and y respectively. Therefore X is (1,2)*-gb-D space.

Definition 4.22: A topological space is said to be (1,2)*-gb-D-connected if X cannot be expressed as the union of two disjoint non-empty (1,2)*-gb-D sets.

Theorem 4.23: If X → Y is (1,2)*-gb-continuous surjection and X is (1,2)*-gb-D-connected, then Y is (1,2)*-D-connected.
Proof: Suppose Y is not (1,2)*-D-connected. Let Y = A ∪ B where A and B are two disjoint non-empty (1,2)*-D sets in Y. Since f is (1,2)*-gb-continuous and onto, X = f^1(A) ∪ f^1(B) where f^1(A) and f^1(B) are disjoint non-empty (1,2)*-gb-D sets in X. This contradicts the fact that X is (1,2)*-gb-D-connected. Hence Y is (1,2)*-D-connected.

Theorem 4.24: If X → Y is (1,2)*-gb-irresolute surjection and X is (1,2)*-gb-D-connected, then Y is (1,2)*-gb-D-connected.
Proof: Suppose Y is not (1,2)*-gb-D-connected. Let Y = A ∪ B where A and B are disjoint non-empty (1,2)*-gb-D sets in Y. Since f is (1,2)*-gb-irresolute and onto, X = f^1(A) ∪ f^1(B) where f^1(A) and f^1(B) are disjoint non-empty (1,2)*-gb-D sets in X. This contradicts the fact that X is (1,2)*-gb-D-connected. Hence Y is (1,2)*-gb-D-connected.

Definition 4.25: A topological space is said to be (1,2)*-gb-D-connected if every cover of X by (1,2)*-gb-D sets has a finite subcover.

Theorem 4.26: If a function f: (X, τ) → (Y, ν) is (1,2)*-gb-continuous surjection and (X, τ) is (1,2)*-gb-D-compact then Y is (1,2)*-gb-D-compact.
\((1,2)^*\)-\(\text{ngb}(y)\), we have \(\{y\}\cap(1,2)^*\)-\(\text{ngb- cl}(z)\) = \(\Phi\). Since \(x \in (1,2)^*\)-\(\text{ngb-cl}\{z\}\), \((1,2)^*\)-\(\text{ngb-cl}\{x\}\) is \((1,2)^*\)-\(\text{ngb-cl}\{z\}\) and \(y \in (1,2)^*\)-\(\text{ngb-cl}(z)\) = \(\Phi\). Therefore, \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\neq (1,2)^*\)-\(\text{ngb-cl}(y)\). Now Ker \((1,2)^*\)-\(\text{ngb}(x)\) \(\neq\) Ker \((1,2)^*\)-\(\text{ngb}(y)\) implies that \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\neq (1,2)^*\)-\(\text{ngb-cl}(y)\).

\((2) \Rightarrow (1):\) Suppose that \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\neq (1,2)^*\)-\(\text{ngb-cl}(y)\).

Then there exists a point \(z \in X\) such that \(z \in (1,2)^*\)-\(\text{ngb-cl}(x)\) and \(z \notin (1,2)^*\)-\(\text{ngb-cl}(y)\). Then, there exists an \((1,2)^*\)-\(\text{ngb-open}\) set containing \(z\) and hence containing \(x\) but not \(y\), i.e., \(y \notin\) Ker \((1,2)^*\)-\(\text{ngb}(y)\). Hence Ker \((1,2)^*\)-\(\text{ngb}(y)\) \(\neq\) Ker \((1,2)^*\)-\(\text{ngb}(y)\).

\textbf{Definition 5.7:} A bitopological space is said to be \((1,2)^*\)-\(\text{ngb-R}_R\) if \((1,2)^*\)-\(\text{ngb-cl}\{x\}\) \(\subseteq G\) whenever \(x \in G \cap (1,2)^*\)-\(\text{ngbBO}(X)\).

\textbf{Definition 5.8:} A bitopological space is said to be \((1,2)^*\)-\(\text{ngb-R}_R\) if for any \(x, y \in X\) with \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\neq (1,2)^*\)-\(\text{ngb-cl}(y)\), there exists disjoint \((1,2)^*\)-\(\text{ngb-open}\) sets \(U\) and \(V\) such that \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\subseteq U\) and \((1,2)^*\)-\(\text{ngb-cl}(y)\) \(\subseteq V\).

\textbf{Definition 5.9:} A bitopological space \((1,2)^*\)-\(\text{R}_R\) is \((1,2)^*\)-weakly \(\pi\)-\(\text{ngb-R}_R\) iff \((1,2)^*\)-\(\text{ngb-cl}\{x\}\) \(\subseteq G\) whenever \(x \in G \cap (1,2)^*\)-\(\text{ngbBO}(X)\).

\textbf{Example 5.10:} Let \(X=\{a,b,c,d\}\). \(\tau=\{(\Phi,\{b\},\{a,b\},\{b,c\},\{b,d\},X\), \(\tau_1=\{\Phi,\{a,b\},X\}\). \((1,2)^*\)-\(\text{ngbBO}(\tau)=\{P(X),X\}\). Then \(X\) is \((1,2)^*\)-\(\text{ngb-R}_R\) if and only if \((1,2)^*\)-\(\text{ngb-R}_R\).

\textbf{Remark 5.11:} Every \((1,2)^*\)-\(\text{ngb-R}_R\) space is \((1,2)^*\)-\(\text{ngb-R}_0\) space.

Let \(U\) be a \((1,2)^*\)-\(\text{ngb-open}\) set such that \(x \in U\). Then since \(x \in (1,2)^*\)-\(\text{ngb-cl}\{y\}\), \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\neq (1,2)^*\)-\(\text{ngb-cl}(y)\). Hence there exists an \((1,2)^*\)-\(\text{ngb-open}\) set \(V\) such that \(y \in V\) such that \((1,2)^*\)-\(\text{ngb-cl}(y)\) \(\subseteq V\) and if \(x \neq y\) \(\Rightarrow\) \(y \notin (1,2)^*\)-\(\text{ngb-cl}(x)\). Hence \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\subseteq U\). Hence \(x\) is \((1,2)^*\)-\(\text{ngb-R}_R\).

\textbf{Theorem 5.12 :} \((1,2)^*\)-\(\text{ngb-R}_R\) iff given \(x \neq y\); \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\neq (1,2)^*\)-\(\text{ngb-cl}(y)\).

Proof: Let \(X\) be \((1,2)^*\)-\(\text{ngb-R}_R\) and let \(x \neq y\) \(\in X\). Suppose \(U\) is \((1,2)^*\)-\(\text{ngb-open}\) set containing \(x\) but not \(y\), then \(y \in (1,2)^*\)-\(\text{ngb-cl}(y)\) \(\subseteq X\)-\(U\) and hence \(x \notin (1,2)^*\)-\(\text{ngb-cl}(y)\). Hence \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\neq (1,2)^*\)-\(\text{ngb-cl}(y)\).

Conversely, let \(x \neq y\) \(\in X\) such that \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\neq (1,2)^*\)-\(\text{ngb-cl}(y)\). This implies \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\subseteq (1,2)^*\)-\(\text{ngb-cl}(y)\). This is true for every \((1,2)^*\)-\(\text{ngb-cl}(x)\). Then \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\subseteq U\) where \(x \in (1,2)^*\)-\(\text{ngb-cl}(x)\) \(\subseteq \bigcup(1,2)^*\)-\(\text{ngbBO}(X)\). This implies \((1,2)^*\)-\(\text{ngb-cl}(x)\) \(\subseteq U\) where \(x \in \bigcup(1,2)^*\)-\(\text{ngbBO}(X)\). Hence \(X\) is \((1,2)^*\)-\(\text{ngb-R}_R\).
We prove the result using theorem 5.13. Let \(x \in (1,2)^*\text{-}\text{ngb-cl}(\{y\}) \) and by theorem 5.14, \(y \in \text{Ker}(1,2)^*\text{-}\text{ngb}(x) \). Since \(x \in (1,2)^*\text{-}\text{ngb-cl}(\{x\}) \) and \((1,2)^*\text{-}\text{ngb-cl}(\{x\}) \) is \((1,2)^*\text{-}\text{ngb-closed} \), then by (iv) we get \(y \in \text{Ker}(1,2)^*\text{-}\text{ngb}(x) \). Conversely, let \(y \in (1,2)^*\text{-}\text{ngb-cl}(\{x\}) \). By lemma 5.5, \(x \in \text{Ker}(1,2)^*\text{-}\text{ngb}(\{y\}) \). Since \(y \in (1,2)^*\text{-}\text{ngb-cl}(\{y\}) \) and \((1,2)^*\text{-}\text{ngb-cl}(\{y\}) \) is \((1,2)^*\text{-}\text{ngb-closed} \), then by (iv) we get \(x \in \text{Ker}(1,2)^*\text{-}\text{ngb}(\{y\}) \). Thus \(y \in (1,2)^*\text{-}\text{ngb-cl}(\{y\}) \). By theorem 5.14, we prove that \(x \) is \((1,2)^*\text{-}\text{ngb-R}_0 \) space.

Theorem 5.19:* A bitopological space \(X \) is \((1,2)^*\text{-}\text{ngb-R}_1 \) iff for \(x,y \in X \), Ker \((1,2)^*\text{-}\text{ngb}(x)\nneq(1,2)^*\text{-}\text{ngb}(y)\), there exists disjoint \((1,2)^*\text{-}\text{ngb-open set}\) U and V such that \((1,2)^*\text{-}\text{ngb-cl}(\{x\})\subseteq U \) and \((1,2)^*\text{-}\text{ngb-cl}(\{y\})\subseteq V \).

Proof: It follows from lemma 5.5.

Theorem 5.20:* A bitopological space \(X \) is \((1,2)^*\text{-}\text{ngb-T}_3 \) if and only if it is \((1,2)^*\text{-}\text{ngb-T}_1 \) and \((1,2)^*\text{-}\text{ngb-R}_1 \).

Proof: If \(X \) is \((1,2)^*\text{-}\text{ngb-T}_3 \), then it is \((1,2)^*\text{-}\text{ngb-T}_1 \). If \(x,y \in X \) such that \((1,2)^*\text{-}\text{ngb-cl}(\{x\})\nneq(1,2)^*\text{-}\text{ngb-cl}(\{y\})\), then \(x \neq y \). Hence there exists disjoint \((1,2)^*\text{-}\text{ngb-open set}\) U and V such that \(x \in U \) and \(y \in V \). This implies \((1,2)^*\text{-}\text{ngb-cl}(\{x\})\subseteq U \) and \((1,2)^*\text{-}\text{ngb-cl}(\{y\})\subseteq V \). Hence \(X \) is \((1,2)^*\text{-}\text{ngb-R}_1 \).

Theorem 5.21:* A bitopological space \(X \) is said to be weakly \((1,2)^*\text{-}\text{ngb-R}_0 \) if \((1,2)^*\text{-}\text{Ker}_{\text{ngb}}(x) \neq X \) for every \(x \in X \).

Proof: Suppose that the space \(X \) is weakly \((1,2)^*\text{-}\text{ngb-R}_0 \). Assume that there is a point \(y \) in \(X \) such that \((1,2)^*\text{-}\text{Ker}_{\text{ngb}}(y) \neq X \). Then \(y \in O \) where \(O \) is some proper \((1,2)^*\text{-}\text{ngb-open set} \) of \(X \). This implies \(y \in \bigcap \{x \mid (1,2)^*\text{-}\text{ngb-cl}(\{x\}) \} \) which is a contradiction.

Conversely, Assume \((1,2)^*\text{-}\text{Ker}_{\text{ngb}}(x) \neq X \) for every \(x \in X \). If there is a point \(y \in X \) such that \(y \in \bigcap \{x \mid (1,2)^*\text{-}\text{ngb-cl}(\{x\}) \} \), then every \((1,2)^*\text{-}\text{ngb-open set} \) containing \(y \) must contain every point of \(X \). This implies the unique \((1,2)^*\text{-}\text{ngb-open set} \) containing \(y \). Hence \((1,2)^*\text{-}\text{Ker}_{\text{ngb}}(y) = X \), which is a contradiction. Thus \(X \) is weakly \((1,2)^*\text{-}\text{ngb-R}_0 \).

Example 5.22: Let \(X = \{a,b,c,d\}, \{a,b\} \cap \{a,c\} = \{a\}, \text{and} \{a\} \subset \emptyset \). Then \(\text{Ker}_{\text{ngb}}(X) = \{a\} \). Thus \(\text{Ker}_{\text{ngb}}(X) \neq X \).

Conclusion: A study on new separation axioms called ngb-separation axioms using the \((1,2)^*\text{-}\text{ngb-open set} \) in bitopological spaces has been done. Also some results of \((1,2)^*\text{-}\text{ngb-T}_3 \), \((1,2)^*\text{-}\text{ngb-D}_0 \), where \(i = 0,1,2 \), and \((1,2)^*\text{-}\text{ngb-R}_0 \), are studied in this paper.
References