Studies on characteristics of Glycine barium nitrate crystal

M.B. Jessie Raj and J. Joseph Prince

1Department of Physics, Bishop Heber College, Trichy.

2Department of Physics, Anna University of Technology, Trichy.

Article Info

Article history:
Received: 27 March 2012;
Revised in revised form: 15 June 2012;
Accepted: 27 June 2012;

Keywords

Glycine additive crystal,
Solution growth,
Optical band gap,
Poison to NLO.

Abstract

The title compound of C2H5NO2·Ba(NO3)2 glycine barium nitrate (GBN), a semiorganic glycine additive material has been grown from slow evaporation solution growth technique at room temperature. The grown single crystals have been analyzed by powder crystal X-ray diffraction. The title compound has good optical transmission in the entire visible region. The optical band gap has been estimated using Tauc’s plot. Its relative SHG efficiency has been tested by Kurtz powder method and it quite interesting that it acts as poison, not favoring NLO efficiency. Thermal stability of the grown crystal was investigated by thermogravimetric and differential thermal analyses.

Introduction

The demand for large-size type single crystals has increased sharply in recent years because these crystals have important piezoelectric, ferroelectric, electro-optic and nonlinear optical properties [Rajesh P et al., 2009]. It is substantially known that additives are one of the significant factors influencing the growth kinetics, morphology and quality of the crystals. In the recent past, many organic amino acids are mixed with inorganic salts in order to enhance its physical and chemical properties. Previous reports shows that the amino acid group of glycine is mixed with H2SO4 [S.Hoshiono et al., 1957], CaNo3 [S. Natarajan et.al., 1984], SrCl2 [P. Narayan et al., 1975], CoBr2 [K.Ravi kumar et. al.1985] to form a single crystals. But none of these are reported to have nonlinear optical (NLO) property. In this paper, we report the growth of Glycine Barium Nitrate (GBN), C2H5NO2·Ba(NO3)2 single crystals by slow evaporation technique and its characterization.

Materials and Methods

Equimolar quantity of Glycine with additives namely, Glycine Barium Nitrate (GBN) were used for synthesis. The reaction taking place is given as follows:

\[\text{C}_2\text{H}_5\text{NO}_2 + \text{Ba}_2(\text{NO}_3) \rightarrow \text{C}_2\text{H}_5\text{NO}_2\cdot\text{Ba}_2(\text{NO}_3) \]

In order to grow good quality crystals, it is essential to increase purity up to a respectable level. In the present study, the commercially available Analytical grade salt was dissolved in deionized water and the recrystallised material was used to prepare the saturated solution. The resulting aqueous solution was filtered and allowed to evaporate under optimized conditions to grow crystals by slow evaporation method at room temperature. Transparent good quality crystals were harvested after a particular period.

Characterisation

Powder XRD studies

The grown crystals are confirmed by Rigaku X-Ray diffractometer with Cu Kα (λ = 1.5418 Å) radiation. The samples were scanned for 20 values from 10° to 90° at a rate of 2°/min. Figure 1 shows the Powder XRD pattern of the GBN crystal.

![Figure 1: Powder XRD spectrum of GBN crystal](image)

Optical properties of the grown crystals were studied using Lambda-35 UV spectrometer. Optical transmittance and absorption were recorded for the crystals of thickness approximately around 2mm. The sharp peaks observed in the spectrum reveals that the purity and crystallinity of the grown material. The result obtained is good agreement with the reported values,[S.Dhanakodi et.al., 2002, T. Balakrishnan 2006]. Comparing the XRD pattern, the incorporation of the additives in glycine lattice is confirmed.[Figure. 1]
transmittance % is observed from 350nm which clearly indicates
the crystal possess good optical transparency for SHG of
Nd:YAG laser.

Figure 2: UV transmission spectra of GBN crystal

The dependence of optical absorption coefficient and the
photon energy helps to study the band structure and the type of
transmission of electrons [V.Ciupina et.al., 2004]. The optical
band gap of the crystals was determined using Tauc’s plot. The
value of band gap energy were estimated from the graph
between (hv) and (αhv)² by extra plotting the linear portion of
curve to zero absorption. Here α is the absorption coefficient and
hv the photon energy. The band gap energy calculated is 5.4 ev
for GBN crystals. As a consequence of wide band gap, the
crystals under study have relatively longer in the visible region
[A.J. Ekpunodi , 2006]. The internal efficiency of the device
also depends upon the absorption coefficient. Hence by tailoring
the absorption coefficient and tuning the band gap of the
material, one can achieve devised material, which is suitable for
fabricating various layers of the optoelectronic devices as per
requirements [G.Bhagavannarayana et.al., 2009].

Figure 3: TGA/ DTA Thermogram of GBN crystal

TGA Studies

The TGA reveals that the sample is thermally stable and has
relatively higher melting point. TGA/DTA studies establishes
the good thermal stability of the crystal up to the melting point
270 °C suggesting the crystals to be a potential for laser
application where crystal with stand high temperature. Since
there is no decomposition observed up to the melting point,
crystallization can be done by melt method also.

NLO Efficiency

The second harmonic generation (SHG) conversion
efficiency of GBN was measured by powder Kurtz and Perry
power technique.[S. K. Kurtz and T.T. Perry, 1968] The crystal
was grounded into a fine powder and densely packed between
two transparent glass slides. A Q switched Nd: YAG laser
emitting a fundamental wavelength of 1064nm (pulse width 10
ns) was allowed to strike the sample cell normally. The SHG
output 532nm (green light) was finally detected by the
photomultiplier tube. A sample of potassium dihydrogen
phosphate (KDP), also powdered was used for the same
experiment as a reference material in the SHG measurement. It
is surprising that glycine with additive barium nitrate is acting as
poison to NLO property.

Conclusion:

In the present study, the crystals of GBN have been grown
by solvent evaporation technique at room temperature. The
crystals were harvested after 3 weeks. The crystals were
transparent and their size and external shape are sensitive to the
additive present in the solution during growth. Crystalline nature
and incorporation of additives in the glycine lattice were
confirmed by powder XRD pattern. UV spectra of the crystals
are highly transparent, which is most desirable property for NLO
applications. The crystals have wide optical band gap. The
internal efficiency of the device also depends upon the
absorption coefficient. Hence by tailoring the absorption
coefficient and tuning the band gap of the material, one can
achieve devised material, which is suitable for fabricating
various layers of the optoelectronic devices as per requirements.
Since there is no decomposition observed up to the melting
point, crystallization can be done by melt method also. It is
surprising that glycine with additive barium nitrate is acting as
poison to NLO property.

References

Growth 2009;311:4069-75.
[5] Sangwal K, Benz KW. Prog Cryst Growth Charact
107,125 (1957).
(1975).
1311.
[13] V.Ciupina et.al., Visual journal of opto electronics and
advanced materials, 6,2004,211.
41, No. 12, 2006, 1184-1188.