Abstract

\(P_{4k+1} \)-factorization of a complete bipartite graph for an integer was studied by Wang [1]. Further, Beiliang [2] extended the work of Wang [1], and studied the \(P_{2k} \)-factorization of complete bipartite multigraphs. For even value of \(k \) in \(P_k \)-factorization, the spectrum problem is completely solved [1, 2, 3]. However for odd value of \(k \) i.e. \(P_3, P_5, P_7 \) and \(P_9 \), the path factorization have been studied by a number of researchers [4, 5, 6, 7]. Again, \(P_3 \)-factorizations of complete bipartite multigraphs and symmetric complete bipartite multi-digraphs were studied by Wang and Beiliang [8]. Also, Beiliang and Wang have shown that Ushio conjecture is true for complete bipartite graphs [9]. In the present paper we shall show that Ushio conjecture is also true for \(4k + 1 \) factorization of complete bipartite graphs. That is, we shall prove that a necessary and sufficient condition for the existence of a \(P_{4k+1} \)-factorization of \(K_{m,n} \) is

\[
\begin{align*}
(1) \quad & (2k+1)m \geq 2kn, \\
(2) \quad & (2k+1)n \geq 2km, \\
(3) \quad & m + n \equiv 0 \mod 4k + 1, \\
(4) \quad & [(2k+1)(m+n)]/(4k(m+n)) \text{ is an integer.}
\end{align*}
\]

Mathematics Subject Classification- 68R10, 05C70, 05C38.

Introduction

Ushio conjecture [11] for path factorization of complete bipartite graphs is as follows:

If \(k \) is odd, and \(m \) and \(n \) be positive integers, then \(K_{m,n} \) has \(P_k \)-factorization if and only if:

\[
\begin{align*}
(1) \quad & (k-1)m \geq kn, \\
(2) \quad & (k-1)n \geq km, \\
(3) \quad & m + n \equiv 0 \mod k, \\
(4) \quad & mn/(k-1)(m+n) \text{ is an integer.}
\end{align*}
\]

In this paper, we shall prove that Ushio conjecture is true for the path factorization of \(P_{4k+1} \)-factorization of complete bipartite graphs, that is we shall prove the theorem given below.

Theorem 1: Let \(k, m, n \) be positive integers, there exist a \(P_{4k+1} \)-factorization of \(K_{m,n} \) if and only if:

\[
\begin{align*}
(1) \quad & (2k+1)m \geq 2kn, \\
(2) \quad & (2k+1)n \geq 2km, \\
(3) \quad & m + n \equiv 0 \mod 4k + 1, \\
(4) \quad & [(4k+1)(m+n)]/(4k(m+n)) \text{ is an integer.}
\end{align*}
\]

Mathematical Analysis

We first give the proof of necessity of theorem 1, which is given in theorem 2. The sufficiency of theorem 1 is proved by theorem 3.

Theorem 2: Let \(k, m, n \) be positive integers. Then for \(P_{4k+1} \)-factorization it is necessary that:

\[
\begin{align*}
(1) \quad & (2k+1)m \geq 2kn, \\
(2) \quad & (2k+1)n \geq 2km, \\
(3) \quad & m + n \equiv 0 \mod 4k + 1, \\
(4) \quad & [(4k+1)(m+n)]/(4k(m+n)) \text{ is an integer.}
\end{align*}
\]

Proof: Let \(r \) be the number of \(P_{4k+1} \)-factor in the factorization and \(\theta \) be the number of copies of \(P_{4k+1} \) in any factor.

Then \(\theta = \frac{m+n}{4k+1} \), and \(\gamma = \frac{(4k+1)m}{4k(m+n)} \)
Let \(a\) and \(b\) be the number of copies of \(P_{4k+1}\) with its end points in \(Y\) and \(X\) in a particular \(P_{4k+1}\)-factor respectively.

Then,

\[
(2k)a + (2k + 1)b = m, \text{ and } (2k + 1)a + (2k)b = n.
\]

Hence,

\[
a = \frac{(2k+1)m-(2k)n}{4k+1}, \quad \text{and} \quad b = \frac{(2k+1)m-(2k)n}{4k+1}.
\]

Conditions (1) and (2) are therefore, necessary. This proves the necessity of the theorem 1.

Now we will prove the sufficiency of theorem 1. Which is given by theorem 3.

Theorem 3: Let \(k, m, n\) be positive integers. Then for \(P_{4k+1}\)-factorization, it is sufficient that:

1. \((2k + 1)m \geq 2kn\),
2. \((2k + 1)n \geq 2km\),
3. \(m + n \equiv 0 \pmod{4k + 1}\),
4. \((4k + 1)mn/[4k(m + n)]\) is an integer.

The proof of this theorem, consist of the following lemmas.

Lemma 1: Let \(a, b, p\) and \(q\) be positive integers. If \(\gcd(ap, bq) = 1\), then \(\gcd(ab, ap + bq) = 1\).

We prove the following result which is used later in the paper.

Lemma 2: If \(K_{m,n}\) has a \(P_{4k+1}\)-factorization, then \(K_{sm,sn}\) has a \(P_{4k+1}\)-factorization for every positive integer \(s\).

Proof: Let \(F_1, F_2, \ldots, F_s\) be a \(1\)-factorable \([10]\) and \(\{F_1, F_2, \ldots, F_s\}\)

be a \(1\)-factorization of it. For each \(i\) with \(1 \leq i \leq s\), replace every edge of \(F_i\) by a \(K_{m,n}\) to get a spanning subgraph \(G_i\) of \(K_{sm,sn}\) such that the graph \(G_i\)'s \(\{1 \leq i \leq s\}\) are pair wise edge disjoint and there union is \(K_{sm,sn}\). Since \(K_{m,n}\) has a \(P_{4k+1}\)-factorization, it is clear that the \(G_i\) is also \(P_{4k+1}\)-factorable and hence \(K_{sm,sn}\) is also \(P_{4k+1}\)-factorable.

Lemma 2 implies that there are three cases to consider.

Case (1) \(2km = (2k + 1)n\)

In this case, let

\[
F_j = \{x_{i+j}y_i, x_{i+j}y_{i+j}; 1 \leq i \leq 4k, 1 \leq j \leq 2(k + 1)\}.
\]

It is easy to see that it is a \(P_{4k+1}\)-factor of \(K_{4k+3}\).

Then \(U_{1s}F_j\) is a \(P_{4k+1}\)-factor of \(K_{4k+2}, K_{m,n}\) has a \(P_{4k+1}\)-factorization.

Case (2) \((2k + 1)m = 2kn\)

Obviously, \(K_{m,n}\) has a \(P_{4k+1}\)-factorization.

Case (3) \((2k + 1)m > (2k)n\)

In this case, let

\[
a = \frac{(2k+1)n-2km}{4k+1}, \quad b = \frac{(2k+1)m-2kn}{4k+1},
\]

Conditions (1) and (2) are necessary. This proves the necessity of the theorem 1.

We have

\[
\gcd((2k)a, (2k + 1)b) = d.
\]

Then, \(2ka = dp\) and \((2k + 1)b = dq\), where \(\gcd(p, q) = 1\).

Therefore,

\[
\gamma = \frac{dpq}{2k((2k + 1)p + 2kq)}.\]

These equalities imply the following equalities:
Now we can establish the following lemma.

Lemma 3:
If
\[\gcd(p, q) = 1, \quad \gcd(p, 2k + 1) = 1,\]

where
\[1 \leq i \leq \mu, \quad 0 < j_i < \nu, \]

then
\[\frac{p}{2\nu^2}q^2 \quad \text{and} \quad s' = u^2v^2w^2q'.\]

Case (1): If \(t' \equiv 1 \pmod{2}\) and \(v'w' \equiv 1 \pmod{2}\), then for some positive integer \(z'\):

\[m = 2\text{stut}(suw^2wp + s'u'v^2w'^2, svw^2q),\]

\[n = 2\text{stut}(t'vwp + t'v'w'q),\]

\[\alpha = \text{stut}(svw^2p + st^2uq),\]

\[\beta = \text{stut}(t'vwp + t'v'w'q),\]

\[r = t'w'(suw^2wp + s'u'v^2w'^2q),\]

\[\frac{c}{d} = \frac{2\text{stut}(t'vwp + t'v'w'q)}{v'w'}.\]

Proof. We are now giving the proof of each case of lemma 3.

\[\gcd(p, q) = 1, \quad \gcd(p, 2k + 1) = 1.\]

Case (3): If \(t' \equiv 1 \pmod{2}\) and \(v'w' \equiv 0 \pmod{2}\), then for some positive integer \(z'\):

\[m = 2\text{stut}(suw^2wp + s'u'v^2w'^2, tv'wp + t'v'w'q),\]

\[n = suwv(w's't^2u'p + st^2uq),\]

\[\alpha = \text{stut}(tv'wp + t'v'w'q),\]

\[\beta = \text{stut}(tv'wp + t'v'w'q),\]

\[r = t'w'(suw^2wp + s'u'v^2w'^2q),\]

\[\frac{c}{d} = \frac{2\text{stut}(tv'wp + t'v'w'q)}{v'w'}.\]

Also, let
\[\frac{p}{2\nu^2}q^2 = \text{stut}(suw^2wp + s'u'v^2w'^2q).\]

Case (2): If \(t' \equiv 0 \pmod{2}\) and \(v'w' \equiv 1 \pmod{2}\), then for some positive integer \(z'\):

\[m = 2\text{stut}(suw^2wp + s'u'v^2w'^2, tv'wp + t'v'w'q),\]

\[n = suwv(w's't^2u'p + st^2uq),\]

\[\alpha = \text{stut}(tv'wp + t'v'w'q),\]

\[\beta = \text{stut}(tv'wp + t'v'w'q),\]

\[r = t'w'(suw^2wp + s'u'v^2w'^2q),\]

\[\frac{c}{d} = \frac{2\text{stut}(tv'wp + t'v'w'q)}{v'w'}.\]

Depending on the values of parameters \(t'\) and \(v'w'\) the proof of three cases of lemma 3 are as follows.

Case (1): If \(t' \equiv 1 \pmod{2}\) and \(v'w' \equiv 1 \pmod{2}\), then for some positive integer \(z'\):

\[m = 2\text{stut}(suw^2wp + s'u'v^2w'^2, tv'wp + t'v'w'q),\]

\[n = suwv(w's't^2u'p + st^2uq),\]

\[\alpha = \text{stut}(tv'wp + t'v'w'q),\]

\[\beta = \text{stut}(tv'wp + t'v'w'q),\]

\[r = t'w'(suw^2wp + s'u'v^2w'^2q),\]

\[\frac{c}{d} = \frac{2\text{stut}(tv'wp + t'v'w'q)}{v'w'}.\]

Case (2): If \(t' \equiv 0 \pmod{2}\) and \(v'w' \equiv 1 \pmod{2}\), then for some positive integer \(z'\):

\[m = 2\text{stut}(suw^2wp + s'u'v^2w'^2, tv'wp + t'v'w'q),\]

\[n = suwv(w's't^2u'p + st^2uq),\]

\[\alpha = \text{stut}(tv'wp + t'v'w'q),\]

\[\beta = \text{stut}(tv'wp + t'v'w'q),\]

\[r = t'w'(suw^2wp + s'u'v^2w'^2q),\]

\[\frac{c}{d} = \frac{2\text{stut}(tv'wp + t'v'w'q)}{v'w'}.\]

Case (3): If \(t' \equiv 1 \pmod{2}\) and \(v'w' \equiv 0 \pmod{2}\), then for some positive integer \(z'\):

\[m = 2\text{stut}(suw^2wp + s'u'v^2w'^2, tv'wp + t'v'w'q),\]

\[n = suwv(w's't^2u'p + st^2uq),\]

\[\alpha = \text{stut}(tv'wp + t'v'w'q),\]

\[\beta = \text{stut}(tv'wp + t'v'w'q),\]

\[r = t'w'(suw^2wp + s'u'v^2w'^2q),\]

\[\frac{c}{d} = \frac{2\text{stut}(tv'wp + t'v'w'q)}{v'w'}.\]
Since \(\gcd(2, v'w') = \gcd(stuv, v'w') = 1 \) and
\(\gcd(vwtp' + tw'q', v'w') = 1 \).

hence \(\frac{\frac{s}{(v'w')}}{t'} \) is an integer. Let \(z_2 = \frac{\frac{s}{(v'w')}}{t'} \), then
\[
\frac{2\text{suww}w'(s' t^2 u' p + st^2 u' q)(t'suwp + ts'v'w'q)z_2}{t'} = z_2.
\]

Since,
\[
\gcd(2, t') = 2, \gcd(suww, t') = \gcd(t'suwp + ts'v'w'q, t') = 1
\]
also
\[
\gcd(s't^2 u' p + st^2 u' q', t') = 1, \text{ therefore } \frac{\frac{s}{t'}}{z_2}
\]
is an integer.

Let \(z_2 = \frac{\frac{s}{t'}}{z_2} \), then the equalities in (2) hold.

Case (3): \(t' \equiv 1 \pmod{2} \) and \(v'w' \equiv 0 \pmod{2} \)
\[
\gcd(2, v'w') = 2, \gcd(stuv, v'w') = 1
\]

hence \(\frac{\frac{s}{(v'w')}}{t'} \) is an integer.

Let \(z_2 = \frac{\frac{s}{(v'w')}}{t'} \), then
\[
\frac{\text{suww}w'(s't^2 u' p + st^2 u' q)(t'suwp + ts'v'w'q)z_2}{t'} = z_2.
\]

Since,
\[
\gcd(2, t') = \gcd(suww, t') = \gcd(t'suwp + ts'v'w'q, t') = 1
\]
and
\[
\gcd(s't^2 u' p + st^2 u' q', t') = \gcd(s't^2 u' p + st^2 u' q', t') = 1
\],

therefore \(\frac{\frac{s}{t'}}{z_2} \) is an integer.

Let \(z_2 = \frac{\frac{s}{t'}}{z_2} \), then the equalities in case (3) hold.

This proves the lemma 3.

We now give the direct construction of case (1) by taking
\(z_1 = 1 \) in lemma 3. We will call this as lemma 4.

Lemma 4. For any positive integers \(s, t, u, v, w, s', t', u', v', w', p \) and \(q, \)
let
\[
m = 4stuwp'(suv^2wp + s'u've'w'q)(vwt'p + tw'q),
\]
\[
n = 2suwww'(s't^2wp + st^2uq)(vp't's + qts'v'w')q.
\]

Then \(K_{mn} \) has a \(P_{4k+1} \)-factorization.

Proof. Let \(a = 2suwwt'(t'vwp + tw'q), b = 2suwwv'(qwt'p + tw'q) \)
and \(r = t'vwp'(suv^2wp + s'u've'w'q)(vwt'+tw'q), \)
then
\[
r_1 = t'(suv^2wp + s'u've'w'q), \quad \text{and} \quad r_2 = v'w'(s't^2u'p + st^2uq).
\]

Let \(X \) and \(Y \) be two partite set of \(K_{mn} \) such that
\[
X = \{x_{i,j}; 1 \leq i \leq r_1, 1 \leq j \leq m_1\}
\]
and
\[
Y = \{y_{i,j}; 1 \leq i \leq r_2, 1 \leq j \leq n_0\}.
\]

where \(m_1 = \frac{m}{r_2} = 4stuwp't + tw'q'w' \)
and
\(n_0 = \frac{n}{r_2} = 2suww(vwp t's + qts'v'w'). \)

Now for each \(i, x, y, z \) and \(z' \),
\[
1 \leq i \leq t'p, 1 \leq x \leq vw, 1 \leq y \leq suwv, 1 \leq z \leq t \text{ and } 0 \leq x' \leq 1,
\]
let
\[
f(i, x, y) = suv^2w^2(i - 1) + suw(x - 1) + y,
\]
\[
g(i, y, z, x') = st'v'w'(i - 1) + suw(x - 1) + y + x' \text{ and}
\]
\[
b(i, x, y, x') = 2suw(i - 1) + 2suw(vwt'p + tw'q')(x - 1) + 2y + x' - 1,
\]
here \(suwwv = 1 = s't'v'u'w' \) and set
\[
E_i = \{(x_{i,j}, y, z, x'); j \in \{i + 1, j + 1, k + 1\}\} \quad 1 \leq j \leq 4suw(vwt'p + tw'q')(x - 1) + 2y + x' - 1,
\]
for each \(i, x, y, z, x' \),
\[
1 \leq i \leq t'v'q', 1 \leq x \leq stv, 1 \leq y \leq vw, 1 \leq z \leq t \text{ and } 0 \leq x' \leq 1,
\]
Let
\[
\phi(i, x, y) = suv^2w^2(i - 1) + suw(x - 1) + y + x,
\]
\[
\psi(i, x, z) = st'v'u'w'(i - 1) + suw(x - 1) + x' \text{ and}
\]
\[
\theta(i, x, y, x') = 2suw(i - 1) + 2z + 4suw(vwt'p + tw'q')(x - 1) + x + x' + 1,
\]
and let
\[
E_i' = \{(x_{i,j}, y, z, x'); j \in \{i + 1, j + 1, k + 1\}\} \quad 1 \leq j \leq 4suw(vwt'p + tw'q')(x - 1) + 2y + x' - 1,
\]
for each \(i, x, y, z, x' \),
\[
1 \leq i \leq 4suw(vwt'p + tw'q')(y - 1) + x' - 1,
\]
and let
\[
F = \bigcup_{1 \leq i \leq t'} E_i, \text{ then it is easy to see that the graph } F
\]
is a \(P_{4k+1} \)-factor of \(K_{mn} \). Define a bijection \(\sigma \)
from \(X \cup Y \) onto \(X \cup Y \) in such a way that
\[
\sigma(x_{i,j}) = x_{i+1,j}, \sigma(y_{i,j}) = y_{i+1,j}.
\]

For each \(i \in \{1, 2, ..., r_2\} \) and each \(j \in \{1, 2, ..., r_2\} \),
let
\[
F_{i,j} = \{\sigma(x) \sigma(y): x \in X, y \in Y, xy \in F\}. \]
It is easy to show that the graphs
\[F_{k,l}(1 \leq i \leq r_1, 1 \leq j \leq r_2) -factor of K_{m,n} \]
and there is a
\[P_{4k+1} -factorization of K_{m,n}. \]

Thus \((F_{k,l}: 1 \leq i \leq r_1, 1 \leq j \leq r_2) -factorization of K_{m,n}. \)

This proves the lemma 4. Similarly we can prove the direct
constructions of cases (2) and (3).

Proof (Theorem 3):
Applying lemmas 2-4, we see that for the parameters \(k, m \) and \(n \) satisfying conditions (1)-(4) in theorem 1, \(K_{m,n} \) has a
\[P_{4k+1} -factorization. \]
This proves the sufficiency of the
conditions given in theorem 3.

Proof (Theorem 1):
Combining theorem 2 and 3, we complete the proof of theorem
1. This proves that Ushio conjecture for
\[P_{4k+1} -factorization of K_{m,n} \]
is true.

References: