A new decomposition method for elastic constant tensor to study the anisotropy of construction materials: tool steel and rock types

Cigdem Dinckal
Department of Civil Engineering, Cankaya University, Ankara, Turkey.

ARTICLE INFO
Article history:
Received: 12 August 2011;
Received in revised form: 10 October 2011;
Accepted: 20 October 2011;

Keywords
Irreducible,
Decomposition,
Norm,
Anistropy and elastic constant tensor.

ABSTRACT
An innovative method for the decomposition of the elastic constant tensor into its irreducible parts is presented. The norm concept of elastic constant tensor, norm ratios and irreducible decomposed parts of elastic constant tensor are used to study the anisotropy of tool steel, rock types and the relationship of their structural properties and other properties with their anisotropy are given. Finally the results are indicated.

The constitutive relation for linear anisotropic elasticity, defined by using stress and strain tensors, is the generalized Hooke's law

\[\sigma_{ij} = C_{ijkl} \varepsilon_{kl} , \quad \varepsilon_{ij} = S_{ijkl} \sigma_{kl} . \]

(1)

This formula demonstrates the well known general linear relation between the stress tensor whose components are and the strain tensor (symmetric second rank tensor) whose components are the components of elastic constant tensor (elasticity tensor) and is the elastic compliance tensor, satisfies three important symmetry restrictions. These are

\[C_{ijkl} = C_{jikl} = C_{ijkl} = C_{ijlk} , \]

(2)

which follow from the symmetry of the stress tensor, the symmetry of the strain tensor and the elastic strain energy. These restrictions reduce the number of independent elastic constants from 81 to 21. Consequently, for anisotropic materials (with triclinic symmetry) the elastic constant tensor has 21 independent components. Elastic compliance tensor possesses the same symmetry properties as the elastic constant tensor and their connection is given by [2]:

\[C_{ijkl} S_{klmn} = \frac{1}{2} \left(\delta_{im} \delta_{jn} + \delta_{in} \delta_{jm} \right) . \]

(3)

Where is the Kronecker delta, the Einstein summation convention over repeated indices are used and indices run from 1 to 3 unless otherwise stated.

Schouten [3] has shown that can be decomposed into two scalars, two deviators, and one nonor parts. The same decomposition in terms of the irreducible representations of the three dimensional rotation group has been given in as:

\[2D_0 + 2D_2 + D_4 \]

(4)

Where the subscripts denote the weight of the representation.

By applying the symmetry conditions (2) to the decomposition results obtained for a general fourth-rank tensor, the following reduction spectrum for the elastic constant tensor is obtained. It contains two scalars, two deviators, and one nonor parts:

\[C_{ijkl} = C_{ijkl}^{(0;1)} + C_{ijkl}^{(0;2)} + C_{ijkl}^{(2;1)} + C_{ijkl}^{(2;2)} + C_{ijkl}^{(4;1)} , \]

(5)

where

\[C_{ijkl}^{(0;1)} = \frac{1}{9} \delta_{ij} \delta_{kl} C_{ppqq} , \]

(6)

\[C_{ijkl}^{(0;2)} = \frac{1}{90} \left(3 \delta_{ij} \delta_{kl} + 3 \delta_{ij} \delta_{lk} - 2 \delta_{ik} \delta_{jl} \right) C_{ppqq} - C_{ppqq} , \]

(7)

\[C_{ijkl}^{(2;1)} = \frac{1}{5} \left(\delta_{ij} C_{pikl} + \delta_{kl} C_{pjil} + \delta_{ik} C_{pjil} + \delta_{jl} C_{pikl} \right) \frac{2}{15} \left(\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} \right) C_{ppqq} - C_{ppqq} , \]

(8)

\[C_{ijkl}^{(2;2)} = \frac{1}{9} \delta_{ij} \delta_{kl} C_{ppqq} - C_{ppqq} , \]

(9)

\[C_{ijkl}^{(4;1)} = \frac{1}{105} \left(\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{ik} \delta_{jl} \right) C_{ppqq} - C_{ppqq} , \]

(10)

where \(C_{ijkl}^{(0;1)} , \ C_{ijkl}^{(0;2)} , \ C_{ijkl}^{(2;1)} , \ C_{ijkl}^{(2;2)} \) are scalar parts, \(C_{ijkl}^{(2;1)} , \ C_{ijkl}^{(2;2)} \) are deviators and \(C_{ijkl}^{(4;1)} \) is the nonor part. These parts are orthonormal to each other. The indices are abbreviated according to the replacement rule given in the following table [1]:

The Norm Concept

Generalizing the concept of the modulus of a vector, norm of a Cartesian tensor (or the modulus of a tensor) is defined as the square root of the contracted product over all indices with itself:

Euclidean norm of a Cartesian tensor is defined as the square root of the contracted product over all indices with itself, which is given as follows.
Denoting elastic constant tensor \(C_{ijkl} \) by \(C_n \), the square of the norm is expressed as [4]:

\[
N^2 = \frac{\| C \|^2}{\| C_n \|^2} = \sum_{i,j} C_{ijkl}^2 = \sum_{i,j} C_{(i,j)} C_{(i,j)}. \tag{11}
\]

Rule3. When \(N_i \) is not dominating or not present, norms of the other irreducible parts can be used as a criterion. But in this case the situation is reverse; the larger the norm ratio value we have, the more anisotropic the material property is.

The square of the norm of the elastic constant tensor \(C_{mn} \) is:

\[
N^2 = \sum_{mn} C_{mn}^2 + 2 \sum_{mn} C_{mn}^{(2,0)} + \sum_{mn} C_{mn}^{(2,2)} + \sum_{mn} C_{mn}^{(4,2)} + \sum_{mn} C_{mn}^{(4,4)} \tag{12}
\]

Let us consider the irreducible decompositions of the elastic constant tensor in the following materials.

Results and Conclusions

1. From Table (3), considering the ratio \(\frac{N_i}{N} \) it can be said that Micaschist is the most anisotropic material with the lowest ratio \(\frac{N_i}{N} \) among the rock types. By regarding the effect of value of norm which is higher in the case of Eclogite, therefore it is obvious that Eclogite is the elastically strongest among the other rocks.
2. Also from Table (3), it is observed that Hardened tool steel is more anisotropic than the normal one with higher value of \(\frac{N_i}{N} \). Furthermore, by considering the effect of \(N_s \), Normal tool steel is elastically stronger than Hardened one. Since its norm value is higher than Hardened tool steel.

In conclusion, both materials (tool steel and rocks) are listed with increasing anisotropy degrees, that is from larger \(\frac{N_s}{N} \) to smaller values. Among these five materials, normal tool steel is the elastically strongest and Slate is the elastically most anisotropic material.

References

Table 2 Elastic Constants of the Materials (GPa) [5]

<table>
<thead>
<tr>
<th>Materials (From Transversely Isotropic System)</th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>c_{13}</th>
<th>c_{33}</th>
<th>c_{44}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool Steels:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>289</td>
<td>116</td>
<td>117</td>
<td>284</td>
<td>84.5</td>
</tr>
<tr>
<td>Hardened</td>
<td>277</td>
<td>113</td>
<td>112</td>
<td>272</td>
<td>80.3</td>
</tr>
<tr>
<td>Rocks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micaschist</td>
<td>165</td>
<td>31.1</td>
<td>50</td>
<td>61.8</td>
<td>19.6</td>
</tr>
<tr>
<td>Slate</td>
<td>87</td>
<td>54.6</td>
<td>7.5</td>
<td>94.1</td>
<td>14.9</td>
</tr>
<tr>
<td>Eclogite</td>
<td>116</td>
<td>42</td>
<td>41</td>
<td>60.9</td>
<td>19.6</td>
</tr>
</tbody>
</table>

Table 3 Norm and Norm Ratios for Materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>N_s</th>
<th>N_d</th>
<th>N_n</th>
<th>N</th>
<th>N_s/N</th>
<th>N_d/N</th>
<th>N_n/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool Steels:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>592.461</td>
<td>4.438</td>
<td>1.384</td>
<td>592.479</td>
<td>0.99996</td>
<td>0.0079</td>
<td>0.0006</td>
</tr>
<tr>
<td>Hardened</td>
<td>567.798</td>
<td>4.658</td>
<td>0.384</td>
<td>567.817</td>
<td>0.99996</td>
<td>0.0078</td>
<td>0.0006</td>
</tr>
<tr>
<td>Rocks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micaschist</td>
<td>152.791</td>
<td>16.753</td>
<td>5.078</td>
<td>153.790</td>
<td>0.999350</td>
<td>0.1089</td>
<td>0.0330</td>
</tr>
<tr>
<td>Slate</td>
<td>260.413</td>
<td>27.829</td>
<td>10.385</td>
<td>362.102</td>
<td>0.999356</td>
<td>0.1062</td>
<td>0.0396</td>
</tr>
<tr>
<td>Eclogite</td>
<td>181.220</td>
<td>63.857</td>
<td>23.171</td>
<td>193.539</td>
<td>0.936531</td>
<td>0.3299</td>
<td>0.1199</td>
</tr>
</tbody>
</table>