New algorithm for graph with graphs vertices
EL-Zohny.H, Salam. R and EL-Morsy.H
Department of Mathematics, Faculty of Science Al-Azahar University, Cairo, Egypt.

ABSTRACT
In this paper we will compute a new algorithm for new graph which its vertex is a graph.

Keywords
Algorithm ,
Graphs vertices.

Input:
Null graph with graphs vertices \(V^n \) , \(V^m \) where n is outer vertices , m is its internal vertices.

Algorithm body:
1. Create a subgraph that visit each outer vertices \(V^n \) and its internal vertices \(V^m \).
2. initialized T to have all vertices of G "which have outer vertices."
3. select the smallest superscript \(k \) for \(1 \leq k \leq i , 0 \leq n \leq j \).
4. \(V^n m^k \) has not already been visited.
5. If no superscript is found , then,
6. Go to step 3 , otherwise,
7. Perform the following:
8. 2a. attach the internal edge \(\{ V^1m^k , V^n e \} \) to T, and visit \(V^1m^k \).
9. 2b. assign \(V^1m^k \) to \(V^n m^k \) and ,
10. 2c. return to step 2.
11. End while.
12. Output T .
end algorithm.

Example 1:
For a null graph shown in fig(1) we can compute its algorithm as follows:

Spanning tree for a graph G is a subgraph of G that contains every vertex of G and is a tree[4].

Main results:
We will discuss two new algorithms for graph with graphs vertices.
1. algorithm for null graph which vertices is a graph:
Input:
Null graph with graphs vertices \(V^{0m} \), \(0 \leq n \leq 3 \), \(0 \leq m \leq 5 \).

Algorithm body:
Create a subgraph that visit each outer vertices \(V^o \) then its internal vertices \(V^{imi} \).
Proceeding from vertex to vertex but moving along internal spanning tree of that graph.
1. initialized \(T \) to have all vertices of \(G \) "which have outer vertices".
2. select \(V^o \) and visit all internal vertices \(V^{imi} \) to \(V^{imi} \).
2a. attach internal edges \{ \(V^{imi},V^{imi} \) \}, \(\ldots \\ldots \{ \(V^{imi},V^{imi} \) \} \) to \(T \).
2b. go to step 2 for the other vertices \(V^o \).
3. output \(T \).
4. output \(T',T'' \).
5. end algorithm.

Algorithm for which vertices is graph:
Input:
Connected graph \(G(V,E) \), \(V(G) = \{V^o,V^i\} \), \(V^o = \{\{V^{00},V^{01}\}\} \), \(V^i = \{\{V^{0},V^{1}\}\} \).

Algorithm body:
Create a subgraph that visit each outer vertices \(V^o \) then its internal vertices \(V^{imi} \).
Proceeding from vertex to vertex but moving along internal spanning tree \(T \) of that graph, then along it's outer spanning tree \(T' \).
1. initialized \(T \) to have vertex \(v^o \).
2. let \(E \) the set of all edges of \(G \), \(m = 0 \).
3. while \((m \leq 1) \).
3a. visit outer vertex \(v^o \) then visit \(V^{00},V^{01} \).
3b. attach the internal edge \(\{V^{00},V^{01}\} \) to \(T \).
3c. attach the outer edge \(e \) to \(T \) and visit \(V^o \).
3d. return to step 3.
End while.
4. output \(T,T' \).
end algorithm.

Example 3:
For a graph shown in fig(3) we have:
Input:
Connected graph \(G(V,E) \), \(V(G) = \{V^o,V^i\} \), \(V^o = \{\{V^{00},V^{01}\}\} \), \(V^i = \{\{V^{0},V^{1}\}\} \).

Algorithm body:
Create a subgraph that visit each outer vertices \(V^o \) then its internal vertices \(V^{imi} \).
Proceeding from vertex to vertex but moving along internal spanning tree \(T \) of that graph, then along it’s outer spanning tree \(T' \).
1. initialized \(T \) to have vertex \(v^o \).
2. let \(E \) the set of all edges of \(G \), \(m = 0 \).
3. while \((m \leq 2) \).
3a. visit outer vertex \(v^o \) then visit \(V^{00},V^{01},V^{02} \).
3b. attach internal vertices \(\{V^{00},V^{01}\},\{V^{01},V^{02}\},\{V^{02},V^{01}\}\) to \(T \).
3c. attach the outer edge e' to T and visit V'.
3d. return to step 3 for the other vertices.
End while.
4. output T,T'.
end algorithm.

Example 4:
For a graph shown in fig(4).

![Fig(4)](image)

Input:
Connected graph $G(V, E)$, $V(G) = \{V_0, V_1, V_2\}$, $V_0 = \{V_{00}, V_{01}, V_{02}\}$, $V_1 = \{V_{10}, V_{11}, V_{12}\}$, $V_2 = \{V_{20}, V_{21}, V_{22}\}$.

Algorithm body:
Create a subgraph that visit each outer vertices V then its internal vertices V_{im}.

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph, then along it's outer spanning tree T'.
1. initialized T to have vertex V_0.
2. let E the set of all edges of G, $m = 0$.
3. while ($m \leq 2$).
3a. visit outer vertex V_0.
then visit V_00, V_01, V_02.
3b. attach internal vertices $\{V_{00}, V_{01}, V_{02}\}$ to T.
3c. attach the outer edge e' to T' and visit V_1.
3d. return to step 3 for the other vertices.
End while.
4. output T, T'.
end algorithm.

References: