Factors affecting the adoption of upland nerica rice in the EJURA sekyeredumase district in the Ashanti region of Ghana

Nimoh, F¹, Tham-Agyekum, E. K² and McCarthy, R¹

¹Department of Agricultural Economics, Agribusiness and Extension, KNUST-Kumasi
²Department of Agricultural Extension, University of Ghana, Legon-Accra.

ABSTRACT

The study was to investigate the factors affecting the adoption of upland NERICA rice in the Ejura-Sekyeredumase District in the Ashanti Region. The simple random sampling technique was used to select 100 rice farmers in the district. About 20% of the farmers had fully adopted the upland NERICA rice. It was found that adoption of upland NERICA rice was dependent on NERICA farm size, accessibility and income level at 5% significant level. The main challenge associated with the production of upland NERICA rice is low rainfall causing total loss of yield. Farmers should form groups to make accessibility to incentives and other benefits easy. They should also cultivate the local rice alongside NERICA to supplement their income and finally, extension agents should increase their contacts with the low adopters of NERICA rice.

Introduction

Rice is the main staple food for millions of people in West Africa and this has created the need to improve its genetic characteristics for the better establishment in the sub-region. West African Rice Development Association (WARDA) conducted thorough research in solving the problems that local rice farmers face in rice production. One major solution was the introduction of the New Rice for Africa (NERICA) (Brown, 1984). The NERICA project was introduced into Ghana in 2005 and it is expected to end in 2010. The objective of the NERICA rice project was to increase yield substantially, increase the income of rice farmers, help overcome some of the existing problems faced by farmers and cut down the country’s import bills. In this regard, NERICA was introduced into three main regions, namely Volta, Ashanti, and Northern, which now have better adoption to NERICA rice even though there are still some problems arising from their acceptance. Thus, meeting the objectives of the project has not reached its highest peak or expectation (Oscar, 2003).

NERICA rice is an upland one and therefore can be grown where maize and cowpea can do well. This has made it more acceptable in the project regions. It has an early maturity period, which makes its cultivation easier as the farmer can have 3 to 4 harvests in a year, while its ready market too is always assured. It is resistant to most diseases and pests, especially blast, and even birds as some have thorns, which make it difficult for the birds to chew or feed on. WARDA, the major rice research institution in West Africa, made a tremendous breakthrough in NERICA rice research through the development of stable and fertile progenies from inter-specific crosses between Asian rice and African rice called the NERICA varieties. Organoleptic tests in West African countries have shown that the taste, aroma and cooking characteristics of NERICA compare favourably with those of imported rice (Obeng, 2000).

Due to the problems associated with rice production, (including prolonged maturity period, low yield and high incidence of diseases), farmers find it difficult to produce it as a sole crop. These problems militate against its production and adoption. The situation has increased the importation of rice to feed the country. In Ghana nowadays, rice has taken the upper hand in terms of its consumption in various households. FAO estimates that current rice imports into the sub-region have grown to more than 4 million metric tonnes per year, costing over US$1 billion in scarce foreign exchange each year. This has worrying consequences for the balance of payment of these countries. Imports of this magnitude represent a major break in broader development and poverty reduction efforts. Thus, as the consumption rate rises so is its importation, which makes the local rice not able to meet the demands of the consumers. The local rice has a longer maturity period which factors into the problem faced by the consumers such that at the time of its need or demand, its supply is limited (Awuni, 2005).

The NERICA rice came into the scene to eradicate this problem and make rice available at all times for consumers, but its adoption and dissemination into the African setting has been risked due to different soil types, climatic conditions as well as personal factors such as the educational level of the farmers. Upland NERICA rice varieties introduced on trial basis in all West African countries have been enthusiastically accepted by farmers to grow more, but are constrained by inadequate supply of seeds and other farm inputs, which makes the willingness of the farmers to fully adopt the rice at a very critical peak (Oscar, 2003). The adoption of a variety is defined here as its use at the individual level or at the aggregate population level (WARDA, 2008). Even though there is increasing rate of adoption, intake abilities of consumers and free acceptance of the rice into the community, there is the need to take into consideration the rate at which this adoption is taking place in...
order not to violate the set objectives of the project. In view of
the aforementioned issues or concerns, the following research
objectives have been considered in this study.
• To examine some demographic features of farmers involved
in the NERICA rice project
• To determine the factors affecting the adoption of upland
NERICA rice in the study area,
• To identify the challenges associated with upland NERICA
rice production.

Methodology
The target population for the research was rice farmers in
the study area. One hundred (100) farmers were interviewed.
These farmers were selected and interviewed from five
operational units of the Ejura- Sekyeredumase District. Twenty
(20) farmers were interviewed from each of the unit with the
help of the respective unit AEA’s. The five units were randomly
sampled from the existing 31 operational units. The
questionnaire was pre-tested in three of the centres to refine the
questions and information gathering process before the final
interview, to obtain information and to check for any additional
information to be added. Tools of analysis used in this study
were descriptive and inferential statistics (chi square test of
independence).

Results and Discussions

Distribution of Respondents by their Cost of Input
Table 1 shows the cost of inputs that respondents incur in
their farming production in two (2) groups. Of the hundred
respondents interviewed, 92% incurred costs of traction (GH¢
25), weedicides (GH¢ 7), fertilizer (GH¢ 36 with coupon and
GH¢ 52 without coupon) per acre (group 1) while the remaining
8% incurred costs of traction (GH¢ 25), weedicides (GH¢ 7),
fertilizer (GH¢ 36 with coupon and GH¢ 52 without coupon),
and hired labour (GH¢ 22) per acre (group 2).

Distribution of Respondents by Farm sizes
In terms of the normal rice farms being cultivated by the
farmers, majority of the respondents (52%) had farm sizes of
more than 5 acres while the least (7%) was made up of farmers
with farm size less than 2 acres. When asked the farm sizes
being used in the cultivation of the Upland Nerica, it was
realised that majority (68%) cultivated less than 2 acres. What
this means is that, the farmers were too scared to take risk in
cultivating the new variety. So even though the farmers have
land sizes that were big enough to accommodate other crops
they still did not want to be affected by the uncertainties that
upland NERICA rice might cause or bring up. This situation is
founded on the diffusion of innovations theory by Rogers (1995)
which has it that the innovation-decision is made through a cost-
benefit analysis where the obstacle is uncertainty. People will
adopt an innovation if they believe that it will, all things
considered, enhance their utility. So they must believe that the
innovation may yield some relative advantage to the idea it
supersedes.

Respondents’ Adoption of Upland NERICA Rice
Out of the 100 farmers interviewed, 20% were full adopters,
48% were partial adopters whiles 32% were low adopters.
Although the innovation had been introduced in the study area,
some of the farmers had still not adopted the innovation. The
farmers who had adopted receive seeds free of charge and other
packages (traction, weedicides, fertilizer and free consultations
on any challenge they face in their farming activities). According to Rogers (1995), for most members of a social
system, the innovation-decision depends heavily on the
innovation-decisions of the other members of the system. In
fact, empirically the successful spread of an innovation follows
an S-shaped curve. There is, after about 10-25% of system
members adopt an innovation, relatively rapid adoption by the
remaining members and then a period in which the holdouts
finally adopt.

Adoption was found to be dependent on the following
variables: Accessibility, income levels and NERICA farm size. Accessibility is significant since 0.05 > 0.00; this implies that
Adoption is dependent on accessibility. This agrees with
Onasanya et al., (2006) who stated that accessibility affects the
adoption of innovation by farmers in Ogun State. Farmers that
have access to upland NERICA rice constitute 96% of the total
number of respondents. Those who are in farmer groups get easy
access to the NERICA seeds than those who are not as the
project (NRDP) recognises and serves grouped farmers first
before any other individual. Income level is significant since
0.05 > 0.00; thus making adoption dependent on income level.
The higher the income of a farmer the higher the possibility of
adopting an innovation.

Out of the total number of adopters (74%), 88% said that
their income level was higher than the local rice compared to
12% saying that their income was lower, 26% non-adopters have
their incomes being lower. In general, NERICA producers get
higher incomes (GH¢ 60.00 per 50kg bag) as against GH¢ 40.00
that the local rice is sold. Also NERICA rice can be harvested
thrice in a year, thus increasing the income level of the farmers.
NERICA farm size is significant thus making adoption
dependent on NERICA farm size. Out of the 74% adopters, 65%
have farm sizes of 1 acre, 21% with 2 acres, 9% with 3 acres,
3% with 4 acres and 1% being for 5 acres and more respectively.
This is so because it is a new technology and the farmers need
time to fully accept it, thus the smaller sizes of farm lands for
NERICA rice.

Challenges Associated with the Production of Upland Nerica Rice
From Table 5, the main challenge associated with the
production of upland NERICA rice is low rainfall causing total
loss of yield (21%) followed by difficulty in threshing and
breakages in milling (20%). High cost of inputs especially
fertilizer (18%) is followed by rodent and bird damage which
has the lowest percentage of 9%.

Conclusions and Recommendations
Farmers should form groups to make accessibility to
incentives and other benefits easy. Farmers should practice
irrigation to substitute natural rainfall when the need arises to
prevent total loss of yield. The farmers should also cultivate the
local rice alongside NERICA to supplement their income.
Extension Agents should increase their contacts with the non
adopters of NERICA rice and also encourage the farmers to
inform their friends about NERICA in order to help eradicate
poverty from the country.

The adopters of the upland NERICA rice should make it a
point to increase their NERICA farm sizes in order to gain more
income through increased production of the NERICA rice.

References
• Amoah, J. E. K. (1995). Development of Consumption,
Commercial Production and Marketing in Onasanya, A. S.,
factors affecting the Adoption of innovation at the grass root
level in Ogun state, Nigeria Journal of Central European
Agriculture Volume Vol. 7, No. 4, pp 601-608.

Table 1- Respondents costs of inputs

<table>
<thead>
<tr>
<th>Grouped cost of inputs</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traction-GH¢25, Weedicides-GH¢7, Fertilizer-GH¢36 with coupon and GH¢52 without coupon /acre</td>
<td>92</td>
<td>92.0</td>
</tr>
<tr>
<td>Traction-GH¢25, Weedicides-GH¢7, Fertilizer-GH¢36 with coupon and GH¢52 without coupon, hired labour-GH¢22 /acre</td>
<td>8</td>
<td>8.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 2- Respondents’ farm sizes

<table>
<thead>
<tr>
<th>Farm size</th>
<th>Rice Farm Sizes</th>
<th>Upland NERICA Rice Farm Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>< 2 acres</td>
<td>7</td>
<td>7.0</td>
</tr>
<tr>
<td>2-3 acres</td>
<td>20</td>
<td>20.0</td>
</tr>
<tr>
<td>4-5 acres</td>
<td>23</td>
<td>23.0</td>
</tr>
<tr>
<td>> 5 acres</td>
<td>52</td>
<td>52.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 3- Adoption of upland NERICA rice

<table>
<thead>
<tr>
<th>Category of Adopters</th>
<th>Frequency</th>
<th>Percentages (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Adopters</td>
<td>20</td>
<td>20.0</td>
</tr>
<tr>
<td>Partial Adopters</td>
<td>48</td>
<td>48.0</td>
</tr>
<tr>
<td>Low Adopters</td>
<td>32</td>
<td>32.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 4 - Chi-square test of independence

<table>
<thead>
<tr>
<th>Factors</th>
<th>Attributes</th>
<th>Value</th>
<th>Df</th>
<th>Asymp. Sig.(2-sided)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Pearsons Chi-Square</td>
<td>6.986*</td>
<td>8</td>
<td>0.538</td>
<td>Independent</td>
</tr>
<tr>
<td></td>
<td>Likelihood Ratio</td>
<td>5.712</td>
<td>8</td>
<td>0.679</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age No. of Valid Cases</td>
<td>100</td>
<td></td>
<td>14.819*</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>Pearsons Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational</td>
<td>Pearsons Chi-Square</td>
<td>1.592*</td>
<td>6</td>
<td>0.953</td>
<td>Independent</td>
</tr>
<tr>
<td></td>
<td>Likelihood Ratio</td>
<td>2.577</td>
<td>6</td>
<td>0.860</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Educational Level No. of Valid Cases</td>
<td>100</td>
<td></td>
<td>2.257*</td>
<td>0.689</td>
</tr>
<tr>
<td></td>
<td>Pearsons Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td>Pearsons Chi-Square</td>
<td>92.517*</td>
<td>4</td>
<td>0.000</td>
<td>Dependent</td>
</tr>
<tr>
<td></td>
<td>Likelihood Ratio</td>
<td>112.746</td>
<td>4</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marital Status No. of Valid Cases</td>
<td>100</td>
<td></td>
<td>56.127*</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Pearsons Chi-Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of Inputs</td>
<td>Pearsons Chi-Square</td>
<td>1.111E2</td>
<td>12</td>
<td>0.000</td>
<td>Dependent</td>
</tr>
<tr>
<td></td>
<td>Likelihood Ratio</td>
<td>123.043</td>
<td>12</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Table 5 - Challenges associated with NERICA rice production

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty in threshing and breakages in milling</td>
<td>20</td>
<td>30.0</td>
</tr>
<tr>
<td>High cost of inputs especially fertilizer</td>
<td>18</td>
<td>23.0</td>
</tr>
<tr>
<td>Low rainfall causes total loss of yield</td>
<td>21</td>
<td>35.0</td>
</tr>
<tr>
<td>Rodent and bird damage</td>
<td>9</td>
<td>12.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

SOURCE: Author’s computation, 2010