Application of hopfield network in improvement of fingerprint recognition process

Mahmoud Alborzi¹, Abbas Toloie-Eshlaghy¹ and Dena Bazazian²

¹Industrial management department, Science and Research Branch, Islamic Azad University, Tehran, Iran
²Information technology management department, Science and Research Branch, Islamic Azad University, Tehran, Iran.

ABSTRACT
Hopfield Network is able to convert noisy data provided to the network because it can act as content addressable memory. Hopfield Network can convert images of noisy fingerprint to the noiseless images or the images with the minimum noise by training through receivable models set. In this research, fingerprint recognition process has been performed through Hamming Distance and effect of use of Hopfield network on fingerprint recognition process has been mentioned. In case those Hamming Distance operations are performed after Hopfield Networks processing, error of fingerprint recognition will be reduced.

Keywords
Fingerprint image, Noise, Hopfield Network, Hamming Distance.

Introduction
Hopfield Network is one of the neural networks which have been used in the present research. Hopfield network in images can have useful applications. Fingerprint images which are used for identification may have noise. For example, it may be injured. In the present research, we study to what extent Hopfield Network can improve noisy or defective fingerprint images and be applied in fingerprint recognition process. Fingerprint images become binary after recalling to be calculated for Hopfield network studies. Hamming Distance is regarded as the best option due to application for binary data. Hamming Distance will find the closest similar image by studying differences between each image of input fingerprint and other images.

Images of fingerprint
Fingerprint of each person is a unique biological trait and can have effective applications for identification. Identification system based on biological traits should be distinguished and can be gathered and stable and bolometric trait of fingerprint has the mentioned specifications so that it has been regarded as valid evidence in judicial authorities (Daliri et al, 2007). Images of fingerprint are fingertips tissue pattern which have unevenness. Unevenness of the fingertip is due to wrinkles (Jean et al, 1997). According to analysis and study of wrinkles in fingertip, we can adjust identify recognition system based on this biological trait.

Preprocessing operations on images of fingerprints images:
In the present research, 40 fingerprints images have been used as model set for Hopfield Network learning. All images of fingerprints are converted to black and white format and then size of all images is equal. Primary images of fingerprint are in large dimensions which are difficult to calculate. For this reason, images will be calculated in smaller sizes. Background of fingerprints is removed and contrast of the images is increased so that images of fingerprints are made more evident. Stages of preprocessing operations on one of the fingerprint images are shown in Figure 1. After performing preprocessing on the model set images, Hopfield operations will be performed.
Hopfield Network

Hopfield network is a kind of recurrent artificial neural networks have been invented by John Hopfield. Hopfield network can play role of a system with dependent memory including two mode components. Hopfield Network has been composed of some nodes each connected to other nodes. Therefore, with regard to the shown figures, among two Hopfield networks, this network is a related network.

Figure 3: Different images of Hopfield Network

Components of Hopfield network are two state components. It means that they can be in two defined states and that their position is determined dependent on the fact that input set of the related component is less or more than the threshold value. In Hopfield Network, all neurons act like each other and there is no classification of input and output neurons. In fact, Hopfield network is a recurrent network in which output of each neuron is connected to input of other neurons. This action is repeated to the extent that output of the network converges to a fixed point.

Hopfield Network Algorithm

In this section, the algorithm which determines function of Hopfield network has been mentioned. The mentioned algorithm is derived from book “Introduction to neural networks”. (Translated by Alborzi, 2001)

Stages of algorithm:

1. Weight coefficients are determined with the following formula:

\[w_{ij} = \sum_{s=0}^{M-1} X^s_i X^s_j \]

2. If \(i = j \) then, \(0 < i, j < M-1 \)

3. We give unknown model to the network. \(u_j(t) \) is, \(i \) node output at \(t \) time.

\[u_j(0) = X^s_i \]

4. We iterate it until final convergence.

\[u_j(t+1) = f_{t+1} \left[\sum_{i=0}^{M-1} w_{ij} u_j(t) \right] \]

5. We supply the unknown pattern.

\[u_j(0) = X^s_i \]

6. In some cases, results of Hopfield network are combination of two answer groups. Group’s combination is as 1 and 3, 2 and 3 and 4.

Weight coefficients between neurons are determined with use of selective sample algorithm of all classes with the formula which is given in algorithm. This stage is stage of network education so that each model is made similar to it. In stage of identification, output of the network is put against the unknown model by imposition, and then the network is released to change in discrete time intervals as long as it reaches stability and its output is fixed. In such case, the network converges to final answer. If an entangled pattern is given to the network, the network will produce its correct pattern, therefore, the network acts as a content addressable memory. In Hopfield Network, patterns are not supplied to the network one by one but they are fed to the network with use of the above stage by calculating weight coefficients. In fact, network education is done only in one step. Function of the Hopfield Network can be summarized as follows:

- **We commission the network**
- **We supply the unknown pattern**
- **We iterate it until final convergence**
- **Noisy fingerprint images processing with Hopfield network**

 In order to process images of fingerprint with Hopfield network, a set of fingerprint images has been given to the network. Then, images of noisy fingerprint are supplied to the network. In this research, images of fingerprint have been studied by adding line or point as noisy fingerprint image. After the images are noisy, they become binary and matrix of noisy images is studied with noiseless images and then elements of the matrix change after being noisy. Noisy elements in images matrix which have been studied as unknown pattern range from 0 to 6. In the following table, the number of images with noisy elements has been studied:

 - Matrix of unknown pattern images faces different results after convergence. In this following table 4, noisy images are given with primary matrices of noiseless images, noisy images matrix and final matrix after convergence.

 - Matrix of fingerprint images will have different results after convergence. The best result which is obtained from Hopfield networks is similar to the first line of the above table. In this case, image matrix is noiseless like the primary image matrix. As shown in the above table, all noisy elements of the matrix may not change correctly and sometimes some fixed elements of matrix may change after convergence. Generally, results obtained from Hopfield operations can be divided into four groups as follows:

 - First answer group: final matrix is similar to the primary matrix and is noiseless after convergence and all noisy elements have been similar to the primary matrix after convergence. For matrices with zero noisy elements, first answer group has not changed after operations of Hopfield network of the studied matrix.

 - Second answer group: in the final matrix, some elements are noiseless after convergence and some elements of the noisy matrix have not changed.

 - Third answer group: in the final matrix, some elements which were fixed after being noisy changed after convergence. Fourth answer group: noisy elements have not changed in the final matrix after convergence.

 In some cases, results of Hopfield network are combination of two answer groups. Group’s combination is as 1 and 3, 2 and 3 and 4 and 5.
Answer 1 and 3 group: noisy elements have changed correctly but some elements of the main matrix have changed by mistake.

Answer 2 and 3 group: noisy elements have changed correctly but some have not changed. Some elements of the main matrix have changed by mistake.

Answer 3 and 4 group: noisy elements have not changed after convergence but some have changed by mistake.

As mentioned above, 40 images of fingerprint images have been stored in system. Different images of these 40 images have been noisy with different noises randomly. With regard to the fact that there are some images with different noises, number of these fingerprint images is 100. 100 matrixes of fingerprint image with zero to 6 noisy elements have been studied with Hopfield network.

After study of the fingerprint image matrixes with Hopfield network, matrixes resulting from these operations are studied in fingerprint recognition process according to Hamming distance method. 100 images of the fingerprint image are studied again in fingerprint recognition process to define effect of Hopfield in fingerprint recognition process.

Hamming Distance:

Hamming distance is obtained by calculating difference of each element in a vector and its corresponding element in another vector and sum of absolute magnitude of differences. Hamming Distance is applied for calculating vectors zero and one. With regard to the obtained numbers in calculations and matrices of fingerprint images, Hamming distance is the best option for fingerprint recognition process.

\[H = \sum (|x_i - y_i|) \]

With the above formula, the minimum sum of absolute magnitude of differences is found and the closest vector similar to the input vector is obtained.

- Fingerprint recognition process according to Hamming distance

In the present research, images of fingerprint are studied with or without Hopfield network according to Hamming distance. In study of fingerprint recognition process, effect of Hopfield network is specified. As mentioned in the previous section, image of fingerprint has been considered. Matrixes of the mentioned images have 0 to 6 noisy elements. Fingerprint images group which have been studied with Hopfield network in fingerprint recognition process have got closer to the primary noiseless image after operations of Hopfield network.

As mentioned above, 40 images of sound fingerprint have been stored in the system. Different images of these 40 images have been randomly noisy with different noises. With regard to the fact that some images are available with different noises, the number of these images group is 100. In fingerprint recognition process, one image out of 100 images is regarded as input according to Hamming distance and compared with 40 images saved in the system. Hamming distance is studied in such a manner that elements of input matrix are compared with elements of 40 matrixes saved in the system and finally the closest similar matrix of the input fingerprint image is mentioned. The announced results in fingerprint recognition process can be classified into four classes of answer.

In case that only one matrix similar to input matrix is announced which is input matrix, result of fingerprint recognition process has been correct in this case.

- In case that two matrices are similar to input matrix provided that there is matrix of the primary image similar to the input image, result of fingerprint recognition process is announced for two images similar to input image.
- In case that three matrices are similar to input matrix provided that there is matrix of the primary image similar to the input image, result of fingerprint recognition process is announced for three images similar to input image.
- In case that the announced matrixes are not the matrixes corresponding to input image, the announced result is incorrect in fingerprint recognition process.
- Therefore, 100 images of fingerprint are studied (with and without Hopfield Network) according to Hamming Distance in two stages and the obtained results are shown in table 4.

With regard to Table 4, there are more correct results with Hopfield Network and fewer incorrect results. That the noise applied to the images is high range; one can make correct comparison on the basis of noisy elements in fingerprint images. With increase in images, it is unlikely that the image similar to the first image will be obtained without noise with Hopfield network.

- Study of hamming distance results with regard to noise of the images

In this part of the article, results obtained from fingerprint recognition process with or without Hopfield network are compared with each other on the basis of noise of the images. In table 4, the obtained results are shown. The upper number in each cell of table is the result with Hopfield network and the lower number is the result without Hopfield Network.

As shown in Table 5, results of fingerprint recognition process with Hopfield network is averagely more correct. The important point in this table is images without noise or one noisy element and in this case, more correct results have been obtained without Hopfield network. In images with average noise rate, there has been more correct recognition with Hopfield network and less incorrect recognition. In images with 5 and 6 noisy elements in each fingerprint matrix, there has been no correct recognition with and without Hopfield network but there is recognition for some similar images and there are fewer results with Hopfield network than those without Hopfield network in incorrect recognitions. In diagrams 3 to 9, percentage of correct results and recognition of two similar images (2?) and recognition of three similar images (3?) and incorrect results are shown on the basis of noise in images.
Conclusion

In this article, the effect of Hopfield network on improvement of fingerprint recognition process was mentioned. Hopfield network could convert images of fingerprint with average noise to images without noise or the least noise. In case of performance of Hopfield network before recognition process, effect of error will be reduced. Hopfield network can act as a content addressable memory and is able to convert noisy images to noiseless images or images with the least noise. In case those operations of Hopfield network are performed on images of fingerprint with average noise and the obtained images are studied in the fingerprint recognition process, error rate will be reduced. Therefore, Hopfield network is able to improve fingerprint recognition process.

References

Table 1: Noisy images and rate of noisy elements in fingerprint images

<table>
<thead>
<tr>
<th>Number of noisy elements equivalent to 6</th>
<th>Number of noisy elements equivalent to 5</th>
<th>Number of noisy elements equivalent to 4</th>
<th>Number of noisy elements equivalent to 3</th>
<th>Number of noisy elements equivalent to 2</th>
<th>Number of noisy elements equivalent to 1</th>
<th>Number of noisy elements equivalent to 0</th>
<th>Noise rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>16</td>
<td>10</td>
<td>18</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>Number of matrix</td>
</tr>
</tbody>
</table>
Table 2: Results of the studied images matrixes with Hopfield network

<table>
<thead>
<tr>
<th>Number of noisy elements equivalent to 6</th>
<th>Number of noisy elements equivalent to 5</th>
<th>Number of noisy elements equivalent to 4</th>
<th>Number of noisy elements equivalent to 3</th>
<th>Number of noisy elements equivalent to 2</th>
<th>Number of noisy elements equivalent to 1</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1a</td>
<td>1 1 1 1 1</td>
<td>1 0 0 1 1</td>
<td>1 0 0 1 1</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>T2a</td>
<td>1 1 1 1 1</td>
<td>1 0 0 0 1</td>
<td>1 0 0 0 1</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>T3a</td>
<td>1 1 1 1 1</td>
<td>1 1 0 0 1</td>
<td>1 1 0 0 1</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>T4a</td>
<td>1 1 1 1 1</td>
<td>1 0 0 0 1</td>
<td>1 0 0 0 1</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

Table 3: Analysis of Hopfield network results and noisy elements in fingerprint image matrix

<table>
<thead>
<tr>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrixes which have reached first answer group.</td>
</tr>
<tr>
<td>Matrixes which have reached first and third answer group.</td>
</tr>
<tr>
<td>Matrixes which have reached fourth answer group.</td>
</tr>
<tr>
<td>Matrixes which have reached second and third answer group.</td>
</tr>
<tr>
<td>Matrixes which have reached third and fourth answer group.</td>
</tr>
<tr>
<td>Matrixes which have reached fourth answer group.</td>
</tr>
</tbody>
</table>
Table 4: Study on effect of Hopfield network by comparing results obtained from Hamming distance

<table>
<thead>
<tr>
<th>Without Hopfield Network</th>
<th>With Hopfield Network</th>
<th>Total number of images according to Hamming distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>57</td>
<td>The number of results showing that Hamming distance is correct.</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>The number of results of 2 similar images of Hamming distance</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>The number of results of 3 similar images of Hamming distance</td>
</tr>
<tr>
<td>41</td>
<td>16</td>
<td>The number of results showing that Hamming distance is not correct.</td>
</tr>
</tbody>
</table>

Table 5: Study of noise and effect of Hopfield network on fingerprint recognition process according to Hamming distance

<table>
<thead>
<tr>
<th>The number of noisy elements in fingerprint image matrix equivalent to 6</th>
<th>The number of noisy elements in fingerprint image matrix equivalent to 5</th>
<th>The number of noisy elements in fingerprint image matrix equivalent to 4</th>
<th>The number of noisy elements in fingerprint image matrix equivalent to 3</th>
<th>The number of noisy elements in fingerprint image matrix equivalent to 2</th>
<th>The number of noisy elements in fingerprint image matrix equivalent to 1</th>
<th>The number of noisy elements in fingerprint image matrix equivalent to 0</th>
<th>Recognition of correct Hamming distance</th>
<th>Recognition of two similar images hamming distance</th>
<th>Recognition of three similar images hamming distance</th>
<th>Recognition of incorrect Hamming distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0%</td>
<td>40%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>10%</td>
<td>0%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>10%</td>
<td>44%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>80%</td>
<td>37%</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>90%</td>
<td>94%</td>
<td>80%</td>
<td>49%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>