A generalization of Shannon inequality based on Aczel and Daroczy entropy and its application in coding theory
Satish Kumar and Arun Choudhary
Department of Mathematics, Geeta Institute of Management & Technology, Kanipla-136131, Kurukshetra, Haryana (India).

ABSTRACT
In the present paper, we have generalized Shannon inequality for Aczel and Daroczy entropy and give its application in coding theory. We define mean codeword length and their bounds have been defined and a coding theorem on a lower and upper bounds of a generalized mean codeword length in terms of Aczel and Daroczy entropy has been proved.

AMS Subject classification: 94A15, 94A17, 94A24, 26D15.

The objective of this paper is to study generalization of (2), and then give an applications in coding theory.

Definition: Let \(N \in \mathbb{N}\) be arbitrarily fixed, \(\alpha, \beta > 0, \alpha \neq 1\) be given real numbers. Then the information measure \(H_{\alpha}^\beta : \Delta_N \rightarrow \mathbb{R}\) is defined by

\[
H_{\alpha}^\beta(P,Q) = \frac{1}{1-\alpha} \log \left(\frac{\sum p_i^{\alpha-1} q_i^\beta}{\sum p_i^\beta} \right)
\]

(6)

\((p_1, p_2, ..., p_N) \in \Delta_N ; (q_1, q_2, ..., q_N) \in \Delta_N\)

Remarks
(i) If \(\beta = 1\), then (6) reduces to (5).
(ii) If \(\beta = 1, p_i = q_i\), then (6) reduces to Renyi’s (1961) entropy.

\[i.e., \quad H_{\alpha}^1(P) = \frac{1}{1-\alpha} \log \left(\sum p_i^{\alpha-1} \right), \quad \alpha > 0(\neq 1)\]

(7)

(iii) If \(\beta = 1\) and \(\alpha \rightarrow 1\), then (6) reduces to Kerridge’s (1961) inaccuracy.
(iv) If \(\beta = 1, p_i = q_i\) and \(\alpha \rightarrow 1\), then (6) reduces to (1).
(v) If \(\alpha \rightarrow 1\), then (6) reduces to generalized Kerridge (1961) inaccuracy for the incomplete power distribution \(P^\beta\) as such:

\[i.e., \quad H_{\alpha}^\beta(P, Q) = \frac{-\sum p_i^\beta \log q_i}{\sum p_i^\beta}, \quad \beta > 0.\]

(8)

(vi) If \(p_i = q_i\), then (6) becomes the entropy of order \(\alpha\) and type \(\beta\).

\[i.e., \quad H_{\alpha}^\beta(P) = \frac{1}{1-\alpha} \log \left(\frac{\sum p_i^{\alpha\beta-1}}{\sum p_i^\beta} \right), \quad \alpha > 0(\neq 1), \beta > 0.\]

(9)
Also, we call $H_\beta^\alpha (P)$ is generalized Renyi's entropy of order α and type β studied by Aczel and Daroczy (1963) and Kapur (1967).

Since $H_\alpha^\beta (P, Q) \neq H_\alpha^\beta (P)$, we will not interpret (6) as a measure of inaccuracy. But $H_\alpha^\beta (P, Q)$ is a generalization of the measure of inaccuracy defined in (9). In spite of the fact that $H_\alpha^\beta (P, Q)$ is not a measure of inaccuracy in its usual sense, its study is justified because it leads to meaningful new measures of length. In the following theorem, we will determine a relation between (9) and (6) of the type (3).

Since (6) is not a measure of inaccuracy in its usual sense, we will call the generalized relation as pseudo-generalization of the Shannon inequality.

Now we are interested to extend the result of (2) in a fashion such as:

$$H_\alpha^\beta (P, Q) \leq H_\alpha^\beta (P, Q).$$

(10)

Nath (1975) has shown that

$$H_\alpha^\beta (P) \leq H_\alpha^\beta (P, Q),$$

(11)

does not hold for all $\alpha > 0$, he showed that $H_\alpha^\beta (P) \leq H_\alpha^\beta (R_\alpha^\beta (P, Q), Q),$ $\alpha > 0$, with equality iff $p_i = q_i, \forall i = 1, 2, \ldots, N,$

where

$$R_\alpha^\beta (P, Q) = \left(r_1(\alpha), r_2(\alpha), \ldots, r_n(\alpha)\right),$$

(13)

and

$$r_i = \frac{p_i^\alpha q_i^{1-\alpha}}{p_i^\beta q_i^{1-\beta}}.$$

(14)

Presently, we are interested to extend the above result as follows:

$$H_\alpha^\beta (P) \leq H_\alpha^\beta (R_\alpha^\beta (P, Q), Q),$$

(15)

where

$$H_\alpha^\beta (P) = \frac{1}{1-\alpha} \log \left(\frac{\sum p_i^{\alpha+\beta-1} q_i^{1-\alpha}}{\sum p_i^\beta q_i}\right), \alpha > 0(\neq 1), \beta > 0,$$

and

$$H_\alpha^\beta (P, Q) = \frac{1}{1-\alpha} \log \left(\frac{\sum p_i^\beta q_i^{(1-\alpha)}}{\sum p_i^{\alpha+\beta-1} q_i}\right), \alpha > 0(\neq 1), \beta > 0.$$

Lemma 1: Let $\left(p_1, p_2, \ldots, p_N\right) = P \in \Delta_N,$

$$(q_1, q_2, \ldots, q_N) = Q \in \Delta_N, \; N \geq 2.$$

And $R_\alpha^\beta (P, Q) = \left(r_1(\alpha, \beta), r_2(\alpha, \beta), \ldots, r_n(\alpha, \beta)\right),$ where

$$r_i(\alpha, \beta) = \frac{p_i^{\alpha+\beta-1} q_i^{1-\alpha}}{\sum p_i^{\alpha+\beta-1} q_i^{1-\alpha}}, \; i = 1, 2, \ldots, N.$$

Then,

$$H_\alpha^\beta (P) \leq H_\alpha^\beta (R_\alpha^\beta (P, Q), Q),$$

with equality iff $p_i = q_i, \forall i = 1, 2, \ldots, N.$

Proof: If $\alpha = 1,$ then (16) becomes

$$-\sum p_i \log p_i \leq -\sum p_i \log q_i.$$

For $\beta = 1, \alpha = 1,$ (16) reduces to (2). Here we give proof only for $\alpha > 0(\neq 1)$ and $\beta > 0.$ It is easily seen that for $\alpha > 0,$ the probability distribution $R_\alpha^\beta (P, Q)$ are complete and belong to $\Delta_N.$ Simple computation gives,

$$H_\alpha^\beta (R_\alpha^\beta (P, Q), Q) = H_\alpha^\beta (P) + I_\alpha^\beta (P//Q),$$

(17)

where

$$I_\alpha^\beta (P//Q) = \frac{1}{\alpha-1} \log \left(\frac{\sum p_i^{\alpha+\beta-1} q_i^{1-\alpha}}{\sum p_i^\beta q_i}\right), \alpha > 0(\neq 1)$$

(18)

denotes Kapur (1968) relative information of order α and type $\beta.$

Since, $I_\alpha^\beta (P//Q) \geq 0$ for $q_i \leq p_i,$ and

$$I_\alpha^\beta (P//Q) = 0 \iff p_i = q_i, \forall i = 1, 2, \ldots, N.$$

(19)

The inequality (16) follows immediately from (17) and (18). From (16), it follows that

$$H_\alpha^\beta (P) = \inf_{Q \in \Delta_N} H_\alpha^\beta (R_\alpha^\beta (P, Q), Q).$$

(20)

Nath (1975) has defined Renyi's entropy as

$$H_\alpha^\beta (P) = \inf_{Q \in \Delta_N} H_\alpha^\beta (P, Q).$$

(21)

Obviously (20) is generalization of (21).

Now we explain utility of (2) and (15) in coding theory.

Let there be an ensemble of messages x_1, x_2, \ldots, x_N with probability of x_i being $p_i > 0, \sum p_i = 1.$ Suppose that the above messages are encoded in uniquely decipherable way by using letters from an alphabet $A = \left(a_1, a_2, \ldots, a_D\right)$ called the code alphabet. If the length of code word assigned to message x_i is $n_i,$ then Mc-Millan (1956) inequality

$$\sum D^{-n_i} \leq 1,$$

(22)

holds. Also the traditional average length

$$L = \sum n_i p_i,$$

(23)

satisfies the inequality

$$L \geq H_1(P),$$

(24)

with equality iff $p_i = D^{-n_i}, \forall i = 1, 2, \ldots, N.$

The classical noiseless coding theorem states that

$$H(P) \leq L < H(P) + 1.$$

(25)

Campbell (1965) has defined the average codeword length of order t as

$$L_t = \frac{1}{t} \log \left[\sum p_i D^{n_i}\right] - 1 < t < \infty,$$

(26)

and proved that if

$$\alpha = (1+t)^{-1},$$

(27)

then,

$$L_t(\alpha) \geq H_\alpha^\beta (P),$$

(28)

with equality iff...
Further, Nath (1975) also extended the noiseless coding theorem (26) in the form,
\[H_a(P) \leq L_a < H_a(P) + 1, \]
where
\[L_a = \frac{1}{\alpha-1} \log \left(\sum \frac{p_i^\alpha D_i^{(\alpha-1)n_i}}{\sum p_i^\alpha} \right), \alpha > 0(\#1). \]

Definition: Let \(N \in \mathbb{N}, \alpha, \beta > 0, \alpha \neq 1 \) be arbitrarily fixed, then the average code word length of order \(\alpha \) and type \(\beta \) corresponding to the generalized information measure \(H_a^\beta(P, Q) \) is given by the formula
\[L(\alpha, \beta) = \frac{1}{\alpha-1} \log \left(\sum \frac{p_i^{\alpha+\beta-1}D_i^{(\alpha-1)n_i}}{\sum p_i^{\alpha+\beta-1}} \right). \]

Remark: (i) When \(\beta = 1 \), then (32) reduces to average code word length studied by Nath (1975).
(ii) When \(\beta = 1 \) and \(\alpha \to 1 \), then (32) reduces to average codeword length studied by Shannon (1948).

Measure of average codeword length of order \(\alpha \) and type \(\beta \)

Definition: Let \(t_i \) denote the cost of transmitting the letter \(a_i \) of the code alphabet \(A \). If \(t_i = 1, i = 1, 2, \ldots, D \), then the average cost of transmission per message is nothing but \(L \) given by (23). Let us define the average code length
\[Z(P, < n_i >, f, \phi) = \phi^{-1} \left[\frac{\sum f(p_i)\phi(n_i)}{\sum f(p_i)} \right]. \]

Where \(f \) is a non-constant positive valued, continuous function defined on \([0,1]\), \(f \) is a strictly monotonically increasing and continuous real valued function defined on \([1,\infty)\) such that \(\phi^{-1} \) exists. From (33), it is clear that we are defining average code length as a most general quasilinear mean value rather than ordinary average.

An intuitive requirement which any measure of average code length should satisfy is that it should be translatable for all positive integers \(m \in N^+ \), where \(N^+ \) denote the set of all positive integers. In other word, if the length of each code word is increased by a positive integer \(m \in N^+ \) by attaching to the right, sequence of length \(m \) constructed by using letter of code alphabet \(A \), then the average code length must be increased by \(m \). Thus, we get the functional equation
\[\phi^{-1} \left[\frac{\sum f(p_i)\phi(n_i + m)}{\sum f(p_i)} \right] = \phi^{-1} \left[\frac{\sum f(p_i)\phi(n_i)}{\sum f(p_i)} \right] + m, \forall m \in N^+. \]

Equation (34) is known as translatinal equation following I. Aczel (1974), the following theorem can be proved easily.

Theorem 1: The only quasilinear measure \(Z(P, < n_i >, f, \phi) \) of average code length which are translatable \(\forall m \in N^+ \) are
\[(a) Z(P, < n_i >, f, \phi_i) = \frac{\sum f(p_i)\phi_i(n_i)}{\sum f(p_i)}. \]
\[(b) Z(P, < n_i >, f, \phi_a) = \frac{1}{\alpha-1} \log \left[\frac{\sum f(p_i)D_i^{(\alpha-1)n_i}}{\sum f(p_i)} \right], \alpha > 0(\#1) \]

Now, our object is to connect (36) to entropy of order \(\alpha \) and type \(\beta \). Let us write (36) in the form:
\[Z(P, < n_i >, f, \phi_a) = \frac{1}{\alpha-1} \log \left[\sum f(p_i)D_i^{(\alpha-1)n_i} \right] + \frac{1}{1-\alpha} \log \left[\sum f(p_i) \right]. \]

Equation (38) gives rise to the functional equation
\[\sum f(p_i) = \phi^{-1}(\sum f(p_i)), \alpha > 0(\#1), \beta > 0, n = 2, 3, \ldots \]

The only non-constant continuous solution of (39) (refer also to Aczel, (1966)) are of the form
\[f(p_i) = \frac{p_i^{\alpha+\beta-1}}{\sum p_i^{\alpha+\beta-1}}, \alpha > 0(\#1), \beta > 0, 0 < p_i \leq 1, \forall m \in N^+. \]

Hence,
\[Z(P, < n_i >, f, \phi_a) = L(\alpha, \beta), \]
where
\[L(\alpha, \beta) = \frac{1}{\alpha-1} \log \left(\frac{\sum p_i^{\alpha+\beta-1}D_i^{(\alpha-1)n_i}}{\sum p_i^{\alpha+\beta-1}} \right), \alpha > 0(\#1) \]

In the following theorem, we give a relation between \(L(\alpha, \beta) \) and \(H_a^\beta(P) \).

Theorem 2: If \(n_i, i = 1, 2, \ldots, N \) are the lengths of codewords satisfying (22), then
\[H_a^\beta(P) \leq L(\alpha, \beta) < H_a^\beta(P) + 1, \beta > 0. \]

The sign of equality holds iff
\[p_i = D^{-\gamma_i}. \]

Proof: In (15) choose \(Q = (q_1, q_2, \ldots, q_N) \) where
\[q_i = D^{-\gamma_i} \]
with choice of \(Q \), (15) becomes
\[H_a^\beta(P) \leq \frac{1}{\alpha-1} \log \left(\frac{\sum p_i^{\alpha+\beta-1}D_i^{(\alpha-1)n_i}}{\sum p_i^{\alpha+\beta-1}} \right), \]
i.e., \(H_a^\beta(P) \leq L(\alpha, \beta) \) which proves the first part of (43).
The equality holds iff \(D^{-n_i} = p_i \), \(i = 1, 2, \ldots, N \) which is equivalent to
\[
 n_i = -\log_D p_i,
\]
Choose all \(n_i \) such that
\[
 \log \frac{1}{p_i} \leq n_i < \log \frac{1}{p_i} + 1.
\]
Using the above relation, it follows that
\[
 D^{-n_i} > D^{-1} p_i,
\]
We now have two possibilities:
If \(\alpha > 1 \); (48) gives us
\[
 p_i^{\alpha \beta - 1} D^{(\alpha - 1)n_i} < p_i^\beta D^{(\alpha - 1)},
\]
multiplying both side by \(\frac{1}{\sum p_i^{\alpha \beta - 1}} \) and then summing over \(i \), we get the required result.
2) If \(0 < \alpha < 1 \). The proof follows on the same lines.

References

Kapur, J.N., Generalized entropy of order \(\alpha \) and type \(\beta \), Maths. Seminar, Delhi, vol. 4, 1967, pp. 78-94.