Two summation formulae based on half argument involving contiguous relation
Salahuddin
P.D.M College of Engineering, Bahadurgarh, Haryana, India

ARTICLE INFO
Article history:
Received: 1 March 2011;
Received in revised form: 24 March 2011;
Accepted: 31 March 2011;

Keywords
Contiguous relation ,
Recurrence relation ,
Gauss second summation theorem.

ABSTRACT
The main objective of this paper is to establish two summation formulae based on half argument involving Contiguous Relation. The results derived in this paper are of general character.
A.M.S. Subject Classification (2000) : 33C05 , 33C45 , 33C60 , 33C70

© 2011 Elixir All rights reserved.

Introduction
The Pochhammer’s symbol
\[(a, k) = (a)_k = \frac{\Gamma(a+k)}{\Gamma(a)} \quad (1)\]

Generalized Gaussian Hypergeometric function of one variable
\[\sum_{k=0}^{\infty} \frac{(a_1)_k(a_2)_k...a_n(b_1)_k(b_2)_k...b_n(z)}{(b_1)_k(b_2)_k...b_n(z)} \quad (2)\]

where the parameters \(b_1, b_2, ... b_n\) are neither zero nor negative integers and \(a, b\) are non-negative integers.

Contiguous Relations
[Andrews p.363(9.16), E.D. p.51(10), H.T.F.L. p.103(32)]
\[(a-b)F_1(a; b; c; z) = aF_1(a+1; b; c; z) - bF_1(a, b+1; c; z) \quad (3)\]
\[[Abramowitz p.558(15.2.19)]
\|(a-b) (1-z)F_1(a, b; c; z) = (c-b)F_1(a, b-1; c; z) + (a-c)F_1(a-1, b; c; z) \quad (4)\]

Recurrence relation
\[\Gamma(z+1) = z \Gamma(z) \quad (5)\]

A New Summation Formula [2]
\[2F_1(a, b; \frac{a+b+1}{2}; z) = 2^{b-1} \frac{(\frac{a+b+1}{2}) \Gamma(\frac{a+1}{2})}{\Gamma(\frac{b+1}{2})} \quad (6)\]

Main Summation Formulae
For both the results \(a \neq b\)
For \(a<1\) and \(a>12\)
\[2F_1(a, b; \frac{a+b+1}{2}; z) = 2^{b-1} \frac{(\frac{a+b+1}{2}) \Gamma(\frac{a+1}{2})}{\Gamma(\frac{b+1}{2})} \quad (7)\]
C derivations of summation formulae (7) to (8):

Derivation of (7): Substituting \(c = \frac{a-b-1}{2} \) and \(z = \frac{1}{2} \) in equation (4), we get

\[
\begin{align*}
(a-b) \ \frac{\Gamma (a-b) \Gamma (a) \Gamma (a-b-1)}{\Gamma (a) \Gamma (a-b)} = & \quad (a-b-1) \ \frac{\Gamma (a-b-1) \Gamma (a) \Gamma (a-b-1)}{\Gamma (a) \Gamma (a-b-1)} \\
+ (a+b+1) \ \frac{\Gamma (a+b+1) \Gamma (a-b-1)}{\Gamma (a-b-1) \Gamma (a+b+1)} \\
\end{align*}
\]

Now with the help of the derived result from equation (6), we get

\[
\begin{align*}
\text{L.H.S} = & \quad (a-b-1) \ 2^{b-2} \ \frac{\Gamma (a-b) \Gamma (a) \Gamma (a-b-1)}{\Gamma (a) \Gamma (a-b)} \\
+ & \quad \frac{\Gamma (a-b) \Gamma (a) \Gamma (a-b-1)}{\Gamma (a) \Gamma (a-b)} \\
+ & \quad \frac{\Gamma (a-b) \Gamma (a) \Gamma (a-b-1)}{\Gamma (a) \Gamma (a-b)} \\
+ & \quad \frac{\Gamma (a-b) \Gamma (a) \Gamma (a-b-1)}{\Gamma (a) \Gamma (a-b)} \\
+ & \quad \frac{\Gamma (a-b) \Gamma (a) \Gamma (a-b-1)}{\Gamma (a) \Gamma (a-b)} \\
\end{align*}
\]

On simplification, we get the result (7)

Similarly, we can prove the other result (8).

References

7. Rainville, E. D.; The contiguous function relations for pF_{q} with applications to Bateman’s $J_{\text{a},\text{b}}$ and Rice’s $H_{\text{a}} (\zeta, \text{p}, \text{v})$, *Bull. Amer. Math. Soc.*, 51(1945), 714-723.