New treatment of the black liquor produced from pulping of rice straw
Raafat M. Issa¹, Morsi M. Abou-Sekkina¹, Alam El-Deen M.Bastawisy², Abdalla M. Khedr³ and Wael A.El-Helece³*
¹Chemistry Department, Faculty of Science, Tanta University, Tanta - Egypt
²Chemistry Department, Faculty of Engineering, Tanta University, Tanta – Egypt
³Chemistry Department, Faculty of Science, Gazan University, Gazan – KSA.

ARTICLE INFO
Article history:
Received: 22 February 2011;
Received in revised form: 21 March 2011;
Accepted: 29 March 2011;

Keywords
Black liquor,
Calcium silicate,
Hydrothermal method;
IR and
XRD investigations.

ABSTRACT
Black liquor the main waste remained from paper industry composed mainly of some organic compounds as a soluble salts and a high portion of sodium silicate. The idea of this paper is to transfer the inorganic part from this waste into useful product (calcium silicate hydrate) which has a lot of known applications nowadays. The preparation of calcium silicate from black liquor was done through direct reaction between the black liquor, calcium carbonate and calcium hydroxide and boiling for about 2 hrs. This method was known as hydrothermal method. The obtained materials as well as the raw materials were investigated using both IR and XRD analyses.

© 2011 Elixir All rights reserved.

Introduction
The environmental problems are more serious in small scale pulp and paper mills which lacks in infrastructure, technical manpower, research and development facilities and to top it the entire resource crunch. These small mills have poor machines and equipment with high energy consumption and more waste generation which results in high cost of conversion of raw material to paper. The major problem of small pulp and paper agro-based mills is from discharge of black liquor which contains highly polluting constituents in the form of lignin and cooking chemicals which are not recovered through chemical recovery prior to its discharge into the surface water or on land. Its discharge deteriorates the precious resource, like river water or land. The black liquor contains lignin along with pulping chemicals which is difficult to treat in effluent treatment plants (ETP) as the lignin is not easily bio-degradable [1-3].

The black liquor consisting of water, chemicals and lignin up to 48%, resulting from washing is fed to evaporation plant where the water is evaporated. The black liquor, after water evaporation, is fed to the chemical recovery boiler where lignin is burnt and chemical (caustic) is recovered back. During the process of burning of black liquor, steam generation at 45kg/cm² passes through Turbine to generate power and steam at lower pressure i.e. 4Kg/cm² shall come out as bleed for the process i.e. evaporator. The recovered caustic, in molten form, is sent to re-causticising plant where lime, salt cake and caustic etc. are added whereby white liquor is formed, which is reused in the digester for cooking [4-6].

The loss of alkali in the un-recovered spent liquor is an economic burden because of the cost of chemicals as also for otherwise lost energy content of the spent liquor. It is possible to raise the profitability of a mill by lowering the chemicals and energy inputs to lowest levels by installing a chemical recovery plant [7, 8].

Chemical recovery plant mainly consists of the following three sections.
1. Storage and evaporation of dilute black liquor.
2. Burning of black liquor solids in recovery furnace.
3. Recovery of caustic by recausticising.

The semi concentrated black liquor from the evaporator plant is first taken to a direct contract evaporator to further concentrate to about 60 – 70 % of black liquor solids. It is then sprayed into the recovery furnace, where the black liquor gets dehydrated and drops to furnace hearth as dry solids. The combustion of organic compound of black liquor is controlled by the temperature of black liquor and air flow at primary and secondary levels. Inorganic compound come out from the bottom of furnace in the form of molten smelt. This smelt is dissolved with weak white liquor to form green liquor [9, 10].

The heat generated in combustion zone, goes in boiler zone with flue gases. In the boiler zone, steam is generated. After the boiler zone, flue gases pass through direct contact evaporator where balance heat is used to concentrate the black liquor further [11].

Green liquor is converted in to white liquor after the reaction with lime in causticising section. From causticising section white liquor (NaOH) goes to pulp mill and mud (CaCO₃) disposed off after its proper washing. Water comes out from mud washing is known weak white liquor. The recovery of chemicals can be as high as 98% on the total inputs of chemicals [12-15].

Experimental
Analysis of raw materials
Novel and non-polluting pulping processes suitable for rice straw are eagerly waited. Non-fibrous constituents, both hemicelluloses and lignin, could be recovered simply from waste liquors in large quantities by fractional precipitation. Results of isolation of both the organic content (lignin) and inorganic
Results and discussion

Infrared spectral analysis investigation of calcium silicate hydrate (CSH) prepared from black liquor

As shown in Fig. 1 the IR absorption spectra of samples prepared from black liquor, calcium carbonate and calcium hydroxide show three bands at 1100 – 1200 (broad), 800, and 463 cm\(^{-1}\) assigned to longitudinal SiO\(_2\) lattice vibration, symmetric Si-O-Si stretching and Si-O-Si bending respectively. Weak absorption bands were also observed at 1790, 2335, and 2928 cm\(^{-1}\) which are assigned to symmetric (\(\nu_s\)) and asymmetric stretching (\(\nu_a\)) vibrations of Si-O-Si and Si-H respectively. The absorption bands at 3449 cm\(^{-1}\) are due to (\(\delta\)OH). The band at 1640 cm\(^{-1}\) is a combination tone due to (\(\delta\)OH), and the SiO\(_2\) overtone [16]. The uniformity of the figure gives the indication that CSH prepared (with its type gained from the mode of vibration) depends mainly on the source of SiO\(_2\) used.

Calcium silicate hydrates prepared have the same characteristic peaks at 221, 968, 1485, and 3427 cm\(^{-1}\) which are assigned to symmetric CaO stretching symmetric Si-O-Si stretching and Si-O-Si bending, respectively [17]. Weak absorption bands were also observed at 1790, 2335, and 2928 cm\(^{-1}\) which are assigned to asymmetric stretching vibrations respectively. Longitudinal SiO\(_2\) lattice vibration at 454 cm\(^{-1}\) was observed as very week absorption. As can be seen from these results and from the literature some peaks disappear e.g. CaO stretching at 1410 cm\(^{-1}\) and CaO bending at 810 cm\(^{-1}\) some other peaks were shifted as CaO from 874 cm\(^{-1}\) to 810 cm\(^{-1}\) and SiO\(_2\) from 1200 cm\(^{-1}\) to 968 cm\(^{-1}\). Based on these changes in the IR band positions the formation of calcium silicate hydrates can be confirmed from the IR patterns. These results are similar to previous observations [18].

TGA studies on silicate sample

The thermograph displays three stages at 38.35, 87.35 and 574.86 °C representing total weight loss 34.193 % and the remaining residue is more than 65 % from the initial weight and we can state from these results that calcium silicate can be separated from black liquor with this method.

Fig. 1 IR absorption spectra of calcium silicate hydrate samples

Fig. 2 X-ray diffraction spectra of calcium silicate hydrate samples

Fig. 3 TGA thermograph of calcium silicate hydrate sample

Fig. 4 DTA thermograph of calcium silicate hydrate sample

Conclusion

Using black liquor remained after pulping rice straw as well as many other cellulosic wastes for the production of paper and paper mill, according to its composition, could be used in many fields.

The newest one due to this paper is the isolation of calcium silicate as solid component from this liquor in order to reuse it in many applications and this will decrease the environmental effects.

Secondly, by using the IR and X ray diffraction analyses as well as TGA and DTA analyses for the investigation of the isolated and prepared calcium silicate are good manners as had been mentioned.
References

Table 1 IR analysis of calcium silicate hydrate samples

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Si-O-Si bending</th>
<th>Si-O-Si stretching</th>
<th>SiO$_2$ lattice</th>
<th>H$_2$O bending</th>
<th>Si-H stretching</th>
<th>H$_2$O stretching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium silicate hydrate</td>
<td>440 850 872 905 922 1035 1430 1490</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ref. data</td>
<td>790 1097 1650</td>
<td>Opal (SiO$_2$.aH$_2$O)</td>
<td>3480</td>
<td>3429</td>
<td>1097</td>
<td>3443</td>
</tr>
<tr>
<td>1</td>
<td>475 621</td>
<td>- - - - - - - -</td>
<td>790 1097 - - - -</td>
<td>3428 1038 - - -</td>
<td>3427</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>471 - - - - - -</td>
<td>787 - - - - - -</td>
<td>790 1098 - - - -</td>
<td>3428 1038 - - -</td>
<td>3427</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>462 - - - - - -</td>
<td>668 - - - - - -</td>
<td>2428 1038 - - -</td>
<td>3428 1038 - - -</td>
<td>3427</td>
<td></td>
</tr>
</tbody>
</table>